w

PROGRAMMER

REFERENCE

Zinc" Interface Library”

Programmer’s Reference

Version 1.0

Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1991 Zinc Software Incorporated Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

TABLE OF CONTENTS

FOLORMIRRION ;. & o i nnaivie e ouliphie € win W w60 w bR Rt e BORIES VR SNT s BCH I F + 1
Chapter 1~—Ul_BIOS_KEYBOARDonumee5eviessiies oossloeviasniod 11
UI_BIOS_KEYBOARD::UI_BIOS_KEYBOARD 13
UI_BIOS_KEYBOARD:: ~UI_BIOS KEYBOARDc.vvuuun... 14
Ehapter It CURBOR .o« cicozne o0 onwwiisbssisbpnd's ¥la SEBEER S oo « 50997 .5 § 17
LR CURBORUL CURSOR. ...« + yir oo it bt 5l s ¥ s S0AS A T 553 18
UI_CURSOR:TUI_CURSORttt 19
ERapter Jvelll DA « oo o cvwmniimninnninns i s yoaedad ybie i iswd JLICH S0 21
ULDATE:UL DATEiiitiiiiiiiiiiiiiiiiniintneenennnnn., 22
UEIMEE S U DATE .. vvnencoveunsnessives s s SIARMEEL Hheyole 24
RELENRARARRDONY . s o0 v 0 w4 506 o b SERA S e WaaeT Wi Vi 159 1L 25
LEDAREGIRPON oo vvnnvsswionsassnnns s BWMER 53 167 CTHIMG 1T JU 29
UI_DATE::NameTablesSetuuiuinininnnnnnnnnn. .. 32
UL DATEGODEIBIOr > . oo v vvvvvrnnnnnnnses Nodsada o dosmins « b oo did oot 34
UL DALEUODEIAION € ., o ou0 oo sigonfinda i o ijs I bATTRVE $43 RN 11 35
L DATESODEIIIOr m= v oo onaisuv 2o s 635 5ls o8 b ¥ vbAITEVO. GafSi il 35
Chapter 4—UI_DEVICE i 3
Chapter SVl DIGPRAY oraci v v 2000 5 50 1 3 T 2V W GHIWLR. oM R R «1L] 39
Chapter 6—UI_DOS_BGI_ DISPLAYcoiiuiiinnnnennnnennn.n, 41
UI_DOS_BGI_DISPLAY::UI_DOS_BGI DISPLAY 43
UI_DOS_BGI_DISPLAY:: ~UI_DOS_BGI_ DISPLAYc.oovvun... 44
UI_DOS_BGI_DISPLAY:Bitmapciuuiininanennnnnn... 45
HLDOS BOLDEPLAYEF 00000 SETmaMaN ST ot B e dd. ol 48
UL DOS B LISPLAY SFURBRR: o 1i. 50507 55 Thle Srt bl s bl < 5 W mdsg 50
UL DOS BOL DISPLAY LIRS i i 535 G046 i3 7o dsifliiii b id - sWshad 1) 52
UI_DOS_BGI_DISPLAY::Rectanglec.ooiuniuniennennnn... 54
UL DOS BGLDISPLAY sRectanBleXOR . ionsinvain dad sidois biid « W50 5 56
UI_DOS_BGI_DISPLAY::RegionConvertc..ooeuuneruneenn... 57
MLDOS RO BDESPEAYIIR o i o ¢ os o0 o tuileB G il A bl “EaiT . 5 58
U DOS BOI DISPLAY TextHeight - sovsions ShT o0 buind « 5 WEaai 10 60
UI_DOS_BGI_DISPLAY:TextWidthccoviviiivrnniennionnna. 61
Chapter 7—UI_DOS_TEXT DISPLAY 63

UI_DOS_TEXT_DISPLAY:: ~UI_DOS_TEXT DISPLAY 66
UL DOS“TEXT DISPLAY Bitiap . & o 200 i e sl orm i = 67
Ul DOS TEXFDISPLAYOPFIE 107, 2L 20w B0 v vt A i 67
UL DOS TEXT DISPERYSIRIXOR: . /. v iiii% s S0 ivvd 06 dod ool 2 pelinui 69
UI_DOS_TEXT DISPLAY:Lineoovvtteeaaeaaeen . 70
Ul_DOS_TEXT DISPLAY:Reetangle W A0H 00 208 Tt sy 72
UL DOS TEXT DISPLAV:RectangléROR-."0 0 i J8vin 75
UL DOS TEXT DISPLAY:ROBIOHCOMVErt .~ 0o 0 Lov Tk 76
UL DOS TEXT OMENIRNIRR 00 s, b D e 77
UL DOS TEXT DISPLAY=ToMMeight o .. ov 000 ANeEL L S5 iy 79
UL DOS_TEXT DISPLAY:RxaWidth 00000 2 10, 5 0asilds il 79
Chapter 8—UL EDIF BNIMOF 0, 000, 00 L0 et e d e T e o amibii e i, 81
UL EDIT_INPO:XINGOBUSIRY - . - . bvi v i ol dhri s i v PR A~ Ya3g 82
Chapter 9—~ULELEMENTco000ivnuiinsienaesesneennsiniiiii] 85
ULELBMENTUL BEBBIBNT G : oL 04 oads ovads i svral Joogesi il 86
Ul BLEMENTa~ UL BLEMENT: . v hoovven . Jrod i el BB L 86
Chapter 10—UI_ERROR _SYSTEMccoiiiiii. ... 89
UI_ERROR_SYSTEM::UI_ ERROR SYSTEMcccoouvuuo... 89
UI_ERROR_SYSTEM:: ~UI_ERROR SYSTEM 90
UI_ERROR_SYSTEM::RePOItEITOr\ 91
Chapter 11—UI_ERROR_WINDOW _SYSTEM 93
Ul ERROR WINDOW SYSTEM :UL_ERROR_WINDOW _SYSTEM 94
UI_ERROR _ _WINDOW _ _SYSTEM:: ~ UI_ERROR _WINDOW _SYSTEM 95
UL ERROR WINDOW _ SYSTEM: ReportByror ;1 500, L2 Bl VT8 vy 96
Chepter 12U EVENT ..., . 0080 a0 e 0 o v niaiyg sy ookl) 99
Chapter 13—UI_EVENT_MANAGER i, 105
UI_EVENT_MANAGER::UI_EVENT MANAGER 107
UL EVENT_MANAGER:: ~UI_EVENT MANAGER 108
UL EVENT MANAGEBR:AGE v oie, o SRR ASNG o0 Toa 204 109
UL EVENTMANAGER::DeviceState ... {ugy 20 i) 0w, ol 110
Ul EVENT. MANAGER:Get . . ooi P aplas@ 1 (g 10 108 g i 112
UL EVENT MANAGBRPUE00 s o dTRL VRN S0 10 sed 1 114
UL EVENT_MANAGER:SUBtIacto.ooeueenannn ., 115
UL EVENT_MANAGER::0Perator +uuuuuuunnnnnnn .. 116
UL EVENT_MANAGER::0PEIatOr —0oovvvemnnnnnnnnnnn. .. 117

Chapter14—UL-EVENT MAP coii . vvvimioeses o omims 4 oabims s s e 119

MAEPEVEIER:, | Juir e, i darer g ane o o arasnoetdtintona st avarar soate BT AIIE W SAST S o 124
Chapterd5—UL.HELP SYSTEM oo vvvivmonnssssive s b deaGliailel i 4 127
UL HELP SYSTEM:UI HELP: SYSTEMo 5 580 BRGNS SEEITLA 128
ULI'HELP SYSTEM: UL HELP SYSTEMcivivrnaconnoevoctoves 128
ULHELP . SYXSTEM:DISPIAYHEID .- o v v oo o S 88800, FIRST Sl oshs T8 129
Chapter 16—UI_HELP_WINDOW_SYSTEM, 131
UI_HELP_WINDOW_SYSTEM::.UI_HELP_WINDOW_SYSTEM 133
UI_HELP_WINDOW_SYSTEM:: ~ UI_HELP_WINDOW _SYSTEM 134
UI HELP "WINDOW_SYSTEM::DisplayHelp it U oe s i o Vad g o 135
Chapter 17—UIL LIST o5 ./ 050 e o, o, o VRGN L W ol) Sl AT 0 137
ULEISTHUIMEIST L) L Ve 000 s B i v bl GBI so oo o e i o 138
ULLISBIEMLALIST. oL L svova s wilite s it o L SRR EL PP L8 L i Y 139
ULLISTUAAG - viovivivie vve i vv o sioeave oos o JERNGTGAHEGES ARGV L 140
ULLISTRICOUDL & ifiliri e v vv v e w v as oo 507 508 8 Vebbed s en o o Bl M L 142
UEISTEDESIOY- Lolifs viiit bl Wiukie s o6 o5 8 % 6 6 006 58 & 510 o ioiatf o i o fo it 618 50 2 143
UBEISTHGEE ol Ao Wiabhas o s i vivvn o voo o BEREE P e 05 144
ULEISRIINAex:". | 250 e v vove v o v v od. Sellned A A0EHIORGE, FY 146
UBEISTRISOTE o, 00 M v v wm v voe o v ow s d o i iPhigd g i o ohP b S350 40 TN 147
UL LISTESUBITACE & ooovviuinmvvie s 556 58 0558 0d o5 55 56 0080 806 6566 iw0a05 5 0 6 508 147
LIS TEOPETatoril 2 il v viiiv v o onb o oas s Fokd 850, SET o VL A0 148
ULEISTEOperaton =t . bt o Shile do i Lo o IR AIRL Wi a DA AN H, W X 149
Chapter 18—~UL.-MS. MOUSEc.civvvus svwe s e SOPBBLE T80 Fis, 151
ULMS-MOUSERUIIMSEMOUSE . i o oo o v oo oo o Jotid B00AGIE, X 153
UILLMS_ MOUSE::"UILMS MOUSEciiiiiiiiiiiiinenn.n. 155
Chapter I9—~UL PALETTE i ::ovovuinivessiinamensie shtdbia, Monhin st AL 157
Chapter 20—ULPALETTE MAPci 000, Jheivit C o o SOTREE A 159
Chapter 21—UI_POSITION i i e 161
Chapter'22—UL:REGION L7 o, Sl L Laudn o LU0 S8 D0 iiali iy Lo alaamd i s 163
€hapter 23—UL.TIMEcovun w5 W8GR D AT ARRIAIEE NS 165
UL TIMECUE TIME . 2oL it v o et VS RN 2 PO GTR EA BA, 166
W IR UHORIRIES (0, Y AL e JEVHR R A s viies ssvwen s won 168
UICTIMESBRportiv .l L0500k a0 el o DGR L G0E, B T, Y e I8 168

UL TEIMERRMPOIt il s Ml idle Gl s TAKS s de { dah 171

UL BAMESRGHESEEE Lo i v o olih ol isa s s do o it oo i s o coions o caysl SERSABGS 174
I SOOI |) o o 0% an oy v s om0 m e e e e 174
UL PINECRPERRION € . o i oo i cns o nas s ms s MEBRASTR SITH. Filebiys 175
Ul _TINEIDpRIRIOY sl . Ll o bl dadats S5 3 Dlebisde e, 43354 176
Chapter 24—UI_WINDOW_MANAGERottt 177
Ul WINDOW MANAGER :Ul_WINDOW_MANAGER 178
UI_WINDOW _ _MANAGER:: UI WINDOW MANAGEBR 4 5 45 ke 3o a0 179
UL WINDOW_MANAGER USSR S R0 B RO BT RS, TR 180
UL WINDOW MANANOBRSENSIt & o000 GiL ¢ o shf8 i d il a5 s 181
UL WINDOW -MANAGBREBUBERCE & &b s a0 0560 wd RN 00004 183
UI_ WINDOW_MANAGER::0perator +oouuuuunenennen.... 184
UI_WINDOW_MANAGER:OPEIatOr —vttiieennnennnnnnn.. 185
Chapter 25—UI_WINDOW _OBJECT0.iitiiiiiinnnnenn... 187
UI WINDOW _OBJECTUNEXtvvvviiiniiiininnieteenennnsnnannes 194
UL WINDOW OBRJEICIEPIEIOUS . . . o ocvonone s snios s il s i did s 194
Chapter 26—UIW_BORDERt 197
VIW BORDERELHW BORDER.cocoecnsnmnneevoss g doia s 198
UBW BORRERE: LW BORDER . . vt s namnnnasine s oo iS5 T020E S 199
Chapter 27—UIW_BUTTONttt i, 201
UL RUTIONLIEW BUITTON . .. (. ocnviinmnssin i os oo ValEwns T24 4.4 203
UIW. BUTTONIE“XIW-BUTION & (& ol incsavessrrsnsossosanannnos 206
CIW BUTIONCERI0RE . . .o e S e oo b A0 A0 0 Bl v 207
UIW BUTTONUEMEEEE - .5 ol e v e vk sl b MEEE N VIR0 540 208
Chapter 28—UIW DATEottt 209
DIW_DATBIIIW DATE ... ccovvennennonosnonses dbbhiidiielieddhi,oa 211
UIW_DATE:: UIW BIRTE .« oo owmmmmmimnmn il @leals s vim s a5 3 m o w50 505 5 216
UIW_ " DATEADEROCE . 0B s o vet'sonn$5 36 w0 ETHA 2T, Uil 30 217
UIW_DATE o SRR R SR BT SR S R T S 218
Chapter 29—UIW_FORMATTED_STRINGc.cooiininnnnan.... 221
UIW_FORMATTED_STRING::UIW_FORMATTED STRING 223
UIW_FORMATTED_STRING:: ~ UIW_FORMATTED STRING 221
UIW_FORMATTED STRING:DAtaAGEL« vovonons sne ot @i o il dils 34 228
UIW_FORMATITED STRING:DAESEt ..o ovsban i« BI85 AT .4 229

vi

UIW ICONSUIW ICON 0 sis o vim e o 5 BEETTE AL 000 L EFE, WL 234

LW BCONCTUIW BOON .. vvo ¢ snn v o sbidn B bl o d SAREE L ILE L R 236
LW ACONEDAtAGEY - v.iv o v wie e 0 s o b w8800 MR T GO L 0T, B4 238
VW SCONCDOMESO « . v voo v co oo o ma oob 5 RN MRGE J 00000, YUK 239
Cliapter 31—=UBWSMATRIX :o oo o o0 o vmevwsniomis SO 5 b I 8070 bt an) 241
VW MATRIXEUIWLMATRIX & (0, ey L BA0 A G000 WAL DL W 243
CIIW MATREG:: “BPNENMATRIX, .00 a0 GG LR 246
Chapter 32—UIW_MAXIMIZE BUTTON0iiiiiiininninen.n. 249
UIW_MAXIMIZE BUTTON:UIW_MAXIMIZE BUTTON 251
UIW_MAXIMIZE_BUTTON:: ~ UIW_MAXIMIZE BUTTON 252
Chapter 33—UIW_MINIMIZE BUTTONttt 253
UIW_MINIMIZE_BUTTON:UIW_MINIMIZE_BUTTON 255
UIW_MINIMIZE_BUTTON:: ~ UIW_MINIMIZE_ BUTTON 256
Chapter 34—-UIW _NUMBER ../, ... 0 ASA T, Wl L DTG AT S, 60 257
UIW_NUMBER:UIW NUMBER 0580 A0 T 018 AT Wil 259
UIW_NUMBER: “UIW_ NUMBERc.cooviivnesiuinna it 265
UIW NUMBER:DMAGEL . . o v o oo v oo 8 AWEIR AN IEMLE 2 W 266
UIW_NUMBER:DSEt« o o000 oo SRR TG ARTEYE W 267
Chaptor 35—UIW POP-UP ITEM 00000 00nueussnnsbndosd il 269
UIW_ POP. UP JTEM:UIW POP UP ITEM. i . s detna bbb A5 T W 27
UIW_POP. UP_JTEM:"UIW _POP UP ITEM 450,06 0001 ¥R 274
Chapter 36—UIW_POP_UP_MENUttt .. 277
UIW_POP UP MENUCUIW POP UP MENU ..couvvovassnnssasssssas 279
UIW_POP_UP MENU::~UIW _POP_UP MENU -, .., .. 43000, Bk 281
Chapter 37—UIW_POP_UP_WINDOWccoiiimninvnnnoninnnna, 283
UIW_POP_UP_WINDOW::UIW_POP_UP_WINDOW 285
UIW_POP_UP_WINDOW::~UIW_POP_UP_WINDOW 288
Chapter 38—-UIW PROMPT covuvvcucosssosenssissostdbsasoiin iy 5 2901
UIW_PROMPI:UIW PROMPT . o v oo v o nnnea e oomdd L ERTHIGIL WA 292
UIW_PROMPT:: " UIW_PROMPTs..... a0V A TUSSTTE W 294
Chapter 39—UIW_PULL DOWN_ITEMcciiiiinnnnnnnnnnn.. 295
UIW_PULL_DOWN_ITEM::UIW_PULL DOWN_ITEM 297
UIW_PULL_DOWN_ITEM:: ~ UIW_PULL_ DOWN_ITEM 299

vii

UIW_PULL_DOWN_ITEM:AQ ... oveee e 300

UIW_PULL_DOWN_ITEM::Subtractccviuininunenenan.. 301
UIW_ PULL DCOWN. ITEMUOPOIRIOE + . o oo oo wnoas s s saiaad 0N 3 WL 302
UIW_PULL-DOWN. ITEM:IOPOIBIOr — oo ooo o sansans dnaet gl Wi 303
Chapter 40—UIW_PULL_ DOWN_MENUcciiuuiiinann... 305
UIW_PULL_DOWN_MENU::UIW_PULL DOWN MENU 307
UIW_PULL_DOWN_MENU:: ~UIW_PULL DOWN MENU 309
Chapter 41—UIW_STRING0ttt 311
ULW_STRINGEIWLRTIRING 50 i o4 Vi ad Ve a0 A VoL Wil 313
LW BTRING AR IR S A0 W a G DTS BN e, 316
UIW STRING:DAAGE .. .o viiniiinnneniiiranoronansnnsansesasens 317
W S TRINGIDAASEUT % i 5567 v v o v o ALIT S U0 S IGE IR Wb bl v 318
Chapter 42—UIW_SYSTEM_BUTTONccciiiiinnn... 319
UIW_SYSTEM_BUTTON::UIW_SYSTEM_BUTTON 321
UIW_SYSTEM_BUTTON:: ~ UIW_SYSTEM BUTTON 322
UIW.SYSTEM. BUTTONGAAD o oo yovero oo SEREMAIN WV H0MLg . 0T 323
UIWSYSTEMOGBEEFHON::Subtract+ chaaialds 00 38000 L sl 14 s 324
UIW_SYSTEM_BUTTON::0perator +o0viildsaeoeessain. 325
UIW_SYSTEM _BUTTON::OPErator —vvvirnrenerneenennvionnnnnn 326
Chapter 43—UIW TEXT. /5 o cccoosvnsnssoe e sAATE MU FH de dborad 329
LN SRENERW ITERT . oo NSk i 08, WA TRL o 80T 51
MW JEXTETIW TERY . cohdih o0 08 I AR 814 S5 a0 334
RHIW PR TEBBIAGEE 7o't ¢« oo v v oo 5 atsimins 0506 o a0 o0 s o oo onssasosonesssn 335
ROW SRR e s v v v wn v wsan s ves o RIHIA S QN WL Lndd o 336
Chapter 44—UIW_TIME 00ttt iiinininnnnnnnns 339
UIW TINECUIW TEMIE .. . cocovvuissmorrosinennannnsosasssnsesens 341
LW TR~ LIIW WIME ... vovvmo 00 s SEGRVTT B0 B, VAL buald vl 346
LW FIMEIRA0I0L . ; o » FGaHatll o9k S5 05 Sl WA, R 0. WAl 347
VI _SIMIERDIRRABON . . i MU Va0 A A o SRR e 510D ST R 348
Chopter A5—TIW TTTLE i, i oo vviiin e tiennnnnneesesbihaline flickeds o 351
O TR IR i o Vo s v b v TSR LW TG0 0. e 353
LW _ TR TXHW TITLE © . . viee oo o0 SN WLIT T Y, Wil 354
UTW TITLEADRIRGCE . S oo v oot oo tie s s s nns s nnannanonnsessssnssss 355
UDW ISRt Uy oo o V0l 0 o0 - BB LS AT LIV, 2000 2Ll 355
Chapter 46—UIW_WINDOWiiiitiiinininnnnnnnnnn. 357

UIW._ WINDOW::UIW. WINDOWccommsnsvsssvssssossosssnsosns 359

UIW=WINDOW:: ~UIW WINDOWcicosocmsivinssonssssasssmss 361
UDW,_ WINDOWEAGA .o ovoovmis oo i oiem oo v e a0 o 000060 o5 oeics 0wt 00w 362
UIW_ WINIDOWEFIISL « . o 6 s wois 001006 0 00050 6 500 i i o0, 2 en sbio e 1 48 o g o e 363
UIW: WINDOWELASE o uc s oo s0 00w 0imte 510 050 00 et il siisv oo o ovin, 3oy lssitys 364
UITW. WINDOWESUDITACE i 55 sus s aontunyons « s sesas #5505 dsboiion, & 55 Shgas 5 55 3w iars 364
UIW_WINDOW::0perator +oiiutiitiiiinnenne .. 365
UIW_WINDOW:0PEIator —vviitiit it iiieie e, 366
IACX o406 566 o 56 65900 i, 38 J61¥ 518 b8 6 RS Bt B 8,8 AT e e 369

f/f & e

®
5

INTRODUCTION

Introduction

The Programmer’s Reference contains descriptions of the Zinc Interface
Library classes, the calling conventions used to invoke the class member
functions, short code samples using the class member functions and
information about other related classes or example programs. It
contains the following sections:

Class object information—This section (Introduction) contains the
class hierarchy, include file (hpp) information and global variables
associated with class objects and structures available within the Zinc
Interface Library.

Class object references—This section (Chapters 1 through 48)
contains short descriptions about the class objects (or structures),
the available member variables and functions and the calling
conventions used with the class object.

All other high-level information is contained in the Programmer’s
Guide. The programmer’s guide is an overview document to the Zinc
Interface Library. It contains the following sections:

Installation—This section (Chapter 1) tells how to install the Zinc
Interface Library software package on your machine.

Conceptual Design—This section (Chapter 2) gives a high-level
description of the Zinc Interface Library, including the conceptual
operation of the library and the major components of the library.

Window Objects—This section (Chapter 3) describes the types of
window objects supported by the Zinc Interface Library. It also
discusses the proper use of the window objects in an application
program.

Default Input Mapping—This section (Chapter 4) describes the
default mapping of keyboard and mouse information set by the Zinc
Interface Library.

Default Color Mapping—This section (Chapter 5) describes the
default color combinations of windows and window objects used by
the Zinc Interface Library.

Tutorials—This section (Chapter 6) provides S tutorials that help

to get started writing application programs that use the Zinc
Interface Library.

The remaining parts of this chapter give the programmer information
about the classes, structures and global variables defined in the Zinc
Interface Library.

Zinc Interface Library—Programmer’s Reference

CLASSES, STRUCTURES AND GLOBAL VARIABLES

General class UI_ELEMENT
class UI_DATE

purpose class UILIST
class UI_TIME

Screen display struct UI_PALETTE
struct UI_PALETTE_MAP

class UI_DISPLAY
class UI_DOS_BGI DISPLAY
class UI_DOS_TEXT_DISPLAY

UI_PALETTE *_backgroundPalette
UI_PALETTE_MAP *_errorPaletteMapTable
UI_PALETTE_MAP *_helpPaletteMapTable
UI_PALETTE_MAP * normalPaletteMapTable

Event struct UI_EVENT
struct UI_EVENT_MAP
management struct UI_KEY
struct UI_POSITION
struct UI_REGION

class UI_BIOS_KEYBOARD
class UI_CURSOR

class UI_DEVICE

class UI_EVENT MANAGER
class UI_MS_MOUSE

UI_EVENT_MAP *_eventMapTable
UI_EVENT_MAP *_hotKeyMapTable

Window class UI_WINDOW_MANAGER

class UI_WINDOW OBJECT

management class UIW_BORDER
class UIW BUTTON
class UIW_DATE
class UIW | FORMATTED_STRING
class UIW_ICON
class UIW_MATRIX
class UIW_MAXIMIZE_BUTTON
class UIW_MINIMIZE BUTTON
class UIW_NUMBER
class UIW_POP_UP_ITEM
class UIW_POP_UP_MENU
class UIW_POP_UP_WINDOW
class UIW PROMPT
class UIW PULL_DOWN_ITEM
class UIW_PULL_DOWN_MENU
class UIW _STRING
class UIW_SYSTEM_BUTTON
class UIW TEXT
class UIW_TIME
class UIW_TITLE
class UIW_WINDOW

Introduction

class UI_ERROR_SYSTEM
Error system class UI_ERROR_WINDOW_SYSTEM

UI_ERROR_SYSTEM *_errorSystem;

class UI_HELP_SYSTEM
Help system € 80s UT-HELP-WINDOW_SYSTEM

UI_HELP_SYSTEM *_helpSystem;

Zinc Interface Library—Programmer’s Reference

INCLUDE FILE HIERARCHY

Ul_GEN.HPP

Ul_DSPHPP

Ul_EVT.HPP

Ul_MAP.HPP

Introduction

#ifndef UI_GEN_HPP
#define UI_GEN_HPP

// struct UI_POSITION
struct UI_REGION

/
/| class UI_DATE
/ class UI_ELEMENT
| class UI_LIST
/ class UI_TIME

NSNS~

#endif

#ifndef UI_DSP_HPP
#define UI_DSP_HPP
#include <UI_GEN.HPP>

// struct UI_PALETTE

// class UI_DISPLAY
/] class UI_DOS_BGI DISPLAY
// class UI_DOS_TEXT_DISPLAY

// extern UI_PALETTE *_backgroundPalette;

#include <UI_EVT.HPP>
#endif

#ifndef UI_EVT_HPP
#define UI_EVT_HPP
#include <UI_DSP.HPP>

struct UI_EVENT
struct UI_KEY

/

/

/ class UI_BIOS_KEYBOARD
/ class UI_CURSOR

/ class UI_DEVICE

/ class UI_EVENT_MANAGER
/ class UI_MS_MOUSE

#ifndef UI_MAP_HPP
#define UI_MAP_HPP
#include <UI_EVT.HPP>

// struct UI_EVENT_MAP
struct UI_PALETTE_MAP

extern UI_EVENT_MAP *_eventMapTable;
extern UI_EVENT_MAP *_hotKeyMapTable;
extern UI

NN~
NN~

#endif

extern
extern

“PALETTE_MAP™ *_normalPaletteMapTable;
UI_PALETTE_MAP *_errorPaletteMapTable;
UI_PALETTE_MAP *_helpPaletteMapTable;

#1ifndef UI_WIN_HPP
RLWIN.BFP #define UI_WIN HPP

#include <UI_MAP.HPP>

class UI_EDIT_INFO

class UI_ERROR_SYSTEM
class UI_ERROR_WINDOW_SYSTEM
class UI_HELP_SYSTEM

class UI_HELP_WINDOW_SYSTEM
class UI_WINDOW_MANAGER
class UI_WINDOW OBJECT
class UIW_BORDER

class UIW _BUTTON

class UIW_DATE

class UIW_FORMATTED_STRING
class UIW_ICON

class UIW_MATRIX

class UIW_MAXIMIZE_BUTTON
class UIW_MINIMIZE_BUTTON
class UIW_NUMBER

class UIW_POP_UP_ITEM
class UIW_POP_UP_MENU
class UIW_POP_UP_WINDOW
class UIW_PROMPT

class UIW_PULL_DOWN_ITEM
class UIW_PULL_DOWN_MENU
class UIW_STRING

class UIW_SYSTEM_BUTTON
class UIW_TEXT

class UIW_TIME

class UIW_TITLE

class UIW_WINDOW

~
~

extern UI_ERROR_SYSTEM *_errorSystem;
extern UI_HELP_SYSTEM *_helpSystem;

e e e e e e e
e e e e R e e

#endif

Zinc Interface Library—Programmer’s Reference

CLASS HIERARCHY

Introduction

class UI_DATE
class UI_DISPLAY

class

class

class UI_ELEMENT

class

class

UI_DOS_BGI_DISPLAY
UI_DOS_TEXT_DISPLAY

UI_DEVICE

+—— class UI_CURSOR
—— class UI_KEY
L—— class UI_MS_MOUSE
UI_WINDOW_OBJECT

class UIW_BORDER
class UIW_BUTTON

—— class
—— class
—— class
—— class

—— class

L—— class

—— class UIW_ICON

—— class UIW_NUMBER
—— class UIW_PROMPT
I—— class UIW_STRING

class

class

class

—— class UIW_TITLE

L—— class UIW_WINDOW

class

class

class

L class UI_BIOS_KEYBOARD

UIW_MAXIMIZE BUTTON
UIW_MINIMIZE BUTTON
UIW_POP_UP_ITEM
UIW_POP_UP_WINDOW
UIW_PULL_DOWN_ITEM
UIW_SYSTEM_BUTTON

—— class UIW_FORMATTED_STRING

UIW_DATE
UIW_TEXT
UIW_TIME

UIW_MATRIX
UIW_POP_UP_MENU
UIW_PULL_DOWN_MENU

class UI_EDIT_INFO
class UIW_FORMATTED_STRING
class UIW_NUMBER
class UIW_STRING
class UI_ERROR_SYSTEM
class UI_WINDOW_ERROR_SYSTEM
class UI_EVENT_MANAGER
class UI_HELP_SYSTEM
class UI_WINDOW_HELP_SYSTEM
class UI_LIST
class UI_TIME
class UI_WINDOW_MANAGER

Zinc Interface Library—Programmer’s Reference

GLOBAL VARIABLES

Error system

Event mapping

Help system

Introduction

UI_ERROR_SYSTEM *_errorSystem is a pointer to the error system.
This variable originally points to a static Ul ERROR_SYSTEM class
object but may be reset at run-time to point to a class object derived
from the UI_ERROR_SYSTEM base class. The external declaration
for this variable is contained in UI_WIN.HPP. The actual declaration
of this variable is contained in G_ERROR.CPP. For more information
about the error system see:

“Chapter 2—Conceptual Design” of the Programmer’s Guide,
“Chapter 10—UI_ERROR_SYSTEM?” of this manual, or
“Chapter 11—UI_ERROR_WINDOW_SYSTEM?” of this manual.

UI_EVENT_MAP *_eventMapTable is a pointer to the event map table
used by all UI_WINDOW_OBJECT class objects and the window
manager to determine the logical meaning of raw events. The external
declaration for this variable is contained in UI_MAPHPP. The actual
declaration of this variable is contained in G_EVENT.CPP.

UI_EVENT_MAP *_hotKeyMapTable is a pointer to the hot key table
used by all high-level windows to determine sub-object hot key
equivalents. The external declaration for this variable is contained in
UI_MAPHPP. The actual declaration of this variable is contained in
G_HOTKEY.CPP.

For more information about event mapping see:

“Chapter 2—Conceptual Design” of the Programmer’s Guide,
“Chapter 12—UI_EVENT” of this manual, or
“Chapter 14—UI_EVENT_MAP” of this manual.

UI_HELP_SYSTEM *_helpSystem is a pointer to the Zinc Interface
Library help system. This variable originally points to a static
UI_HELP_SYSTEM class object but may be reset at run-time to point
to a class object derived from the UIl_HELP_SYSTEM base class. The
external declaration for this variable is contained in UI_WIN.HPP. The
actual declaration of this variable is contained in G_HELP.CPP.

10

Palette
mapping

For more information about the help system see:

“Chapter 15—UI_HELP_SYSTEM” or
“Chapter 16—UI_HELP_WINDOW_SYSTEM”

of this manual.

UI_PALETTE *_backgroundPalette is a pointer to the background
palette. The external declaration for this variable is contained in
UI_DSPHPP. The actual declaration of this variable is contained in
G_PBACK.CPP.

UI_PALETTE_MAP *_errorPaletteMapTable is a pointer to the error
palette table. This is the palette table used by the error system. The
external declaration for this variable is contained in UL_ MAPHPP. The
actual declaration of this variable is contained in G_PERROR.CPP.

UI_PALETTE_MAP *_helpPaletteMapTable is a pointer to the help
palette table. This is the palette table used by the help system. The
external declaration for this variable is contained in UI_MAPHPP. The
actual declaration of this variable is contained in G_PHELP.CPP.

UI_PALETTE_MAP *_normalPaletteMapTable is a pointer to the
normal palette table. This is the default palette table used by all
window objects. The external declaration for this variable is contained
in UI_MAPHPP. The actual declaration of this variable is contained in
G_PNORM.CPP.

For more information about palette mapping see:
“Chapter 2—Conceptual Design” of the Programmer’s Guide,

“Chapter 19—UI_PALETTE” of this manual, or
“Chapter 20—UI_PALETTE_MAP” of this manual.

Zinc Interface Library—Programmer’s Reference

CHAPTER 1 - Ul_BIOS_KEYBOARD

Overview

Keyboard event
information

The UI_BIOS_KEYBOARD class is used to get event information from
the keyboard. This class implements a BIOS level keyboard interface
that auto-detects for regular or enhanced keyboards. Most compiler
libraries have a set of functions to get input from the keyboard (e.g.,
getch(), getchar()). However, in the Zinc Interface Library, the
keyboard is interfaced with other devices, such as a mouse, to provide
smooth control of the user’s input. This interface is achieved through
the event manager, where the Ul_BIOS_KEYBOARD class is one of
many input devices that feed event information to the event manager’s
event queue. The public members of the UI_BIOS_KEYBOARD class
(declared in UI_EVL.HPP) are:

class UI_BIOS_KEYBOARD : public UI_DEVICE

{
public:

UI_BIOS_KEYBOARD (USHORT initialState = D_ON);
virtual “UI_BIOS_KEYBOARD(void);

}s

The keyboard device provides the following event information (declared
in UL_EVL.HPP) when a key is retrieved using the UI_EVENT_-
MANAGER::Get function:

struct UI_KEY

UCHAR shiftState; // The keyboard’s shift state.
UCHAR value; // The key’s ascii value.

b

struct UI_EVENT
int type; // The type of event (E_KEY).
USHORT rawCode; // The key’s raw scan code.
union

UI_KEY key; // The key information.

UI_REGION region;
UI_POSITION position;
void *data;
};
};

e type is the event type. The keyboard device always generates an
E_KEY type event.

Chapter 1 — Ul_BIOS_KEYBOARD 11

12

rawCode is the key’s raw scan code. The following list shows the
scan code values for selected keys:

‘a’ key (lower-case) Ox1E61
‘A’ key (upper-case) Ox1E41
enter key 0x1CO0D
escape key 0x011B
F1 key 0x3B00
gray up-arrow 0x48E0

A set of DOS function key scan code/constant equivalents is
provided in UI_MAPHPP. For example, the function keys shown
above have the following constant declarations:

const USHORT ENTER = 0x1C0D;
const USHORT ESCAPE = 0x011B;
const USHORT F1 = 0x3B00;
const USHORT GRAY_UP_ARROW = Ox48EO;

key.shiftState is the shift state of the keyboard. The shift state may
contain one or more of the following flags (declared in
UI_EVTL.HPP):
S_ALT—The <Alt> key is pressed.
S_CAPS_LOCK—The <Caps-Lock> key is on.
S_CTRL—The <Ctrl> key is pressed.
S_INSERT—The <Ins> key is on.
S_LEFT_SHIFT—The <Left-Shift> key is pressed.
S_NUM_LOCK—The <Num-Lock> key is on.
S_RIGHT_SHIFT—The <Right-Shift> key is pressed.
S_SCROLL_LOCK—The <Scroll-Lock> key is on.
key.value is the low eight bits of the scan code. If a non-function
key is pressed, this gives the ascii value of the key. For example,
the character ‘a’ produces a scan code of Ox1E61 but has an
associated ascii value of 0x61 (i.e., the character ‘a’ in the ascii

character set). The programmer should use key.value when ascii
character values are desired, not key.scanCode.

Zinc Interface Library - Programmer’s Reference

See also The example file XBIOSKEY.CPP, which gives a complete example of
the Ul_BIOS_KEYBOARD class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the operation of device classes within the event
manager.

“Chapter 2—UI_CURSOR” of this manual, which describes an
additional device derived from the UI_DEVICE class.

“Chapter 4—UI_DEVICE” of this manual, which describes the base
class from which the UI_BIOS_KEYBOARD class is derived.

“Chapter 13—UI_EVENT_MANAGER” of this manual, which
describes the operation (e.g., addition, subtraction, state change) of
device classes within the event manager.

“Chapter 18—UI_MS_MOUSE” of this manual, which describes an
additional device derived from the Ul_DEVICE class.

!I_BIOS_KEYBOARD::UI_BIOS_KEYBOARD

Syntax #include <ui_evt.h>
UI_BIOS_KEYBOARD::UI_BIOS_KEYBOARD(
USHORT initialState = D_ON);

Remarks This constructor returns a pointer to a new Ul_BIOS_KEYBOARD
class object. It should be called after the following class constructors
have been called:

1—UI_DOS_BGI_DISPLAY or UI_DOS_TEXT_DISPLAY, then
2—UI_EVENT_MANAGER

NOTE: If the keyboard device is attached to the event manager, it will
automatically be destroyed when the event manager is destroyed.

Chapter 1 — Ul_BIOS_KEYBOARD 13

* initialState,, is the initial state of the keyboard device. The keyboard
device may be set to one of the following states (declared in
UI_EVT.HPP):

D_OFF—Initializes the keyboard but disables events. If the
keyboard state is set to D_OFF, events are removed from the
keyboard BIOS but not placed in the event queue.

D_ON—Initializes the keyboard to feed keyboard information
to the event queue. (This is the default value if no argument
is provided.)

The state of the UI_BIOS_KEYBOARD device can be changed at
run-time using the UI_EVENT_MANAGER::DeviceState function
call.

Example #include <ui_evt.hpp>
%xampleFunction1()

UI_DOS_TEXT_DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

// Default to the ON state.
UI_BIOS_KEYBOARD *keyboard = new UI_BIOS_KEYBOARD;
eventManager + keyboard;

}
%xampleFunctionZ()
// Attach the keyboard directly to the event manager.
UI_DOS_TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =
new UI_EVENT_MANAGER (100, display);
*eventManager + new UI_BIOS_KEYBOARD;
}

UI_BIOS_KEYBOARD:: ~ Ul_BIOS_KEYBOARD

Syntax #include <ui_evt.hpp>

virtual UI_BIOS_KEYBOARD:: ~ UI_BIOS_KEYBOARD(void);

14 Zinc Interface Library — Programmer’s Reference

Remarks This virtual destructor destroys the class information associated with the
UI_BIOS_KEYBOARD object and closes the BIOS interface to the
keyboard. Care should be taken to only destroy a keyboard device that
is not attached to the event manager.

Example #include <ui_evt.hpp>
ExampleFunctioni()
{

UI_DOS_TEXT DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

// Default to the ON state.
UI_BIOS_KEYBOARD *keyboard = new UI_BIOS_KEYBOARD;
eventManager + keyboard;

// Remove the keyboard device from the event manager manually.
// This operation is not necessary since it would automatically
// be destroyed by the event manager (see ExampleFunction2).
eventManager - keyboard;

delete keyboard;

}
ExampleFunction2()
{
// Attach the keyboard directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =
new UI_EVENT_MANAGER (100, display);
*eventManager + new UI_BIOS_KEYBOARD;
}/ This automatically calls the keyboard destructor.
delete eventManager;
delete display;
}

Chapter 1 - Ul_BIOS_KEYBOARD 15

Zinc Interface Library - Programmer’s Reference

16

CHAPTER 2 - UI_CURSOR

Overview The UI_CURSOR class is used to display a blinking cursor on the
screen. It is primarily used by objects that can be edited in order to
show the end-user’s position within the edit buffer. In graphics mode,
this class paints a blinking cursor on the screen. In text mode, this class
uses BIOS calls to enable or disable the blinking hardware cursor. The
public members of the UI_CURSOR class (declared in UI_EVL.HPP)
are:

class UI_CURSOR : public UI_DEVICE

{

public:
UI_CURSOR (USHORT initialState = D_OFF);
virtual “UI_CURSOR(void);

See also The example file XCURSOR.CPP, which gives a complete example of
the UI_CURSOR class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the operation of device classes within the event
manager.

“Chapter 1—UI_BIOS_KEYBOARD?” of this manual, which describes
an additional device derived from the UIl_DEVICE class.

“Chapter 4—UI_DEVICE class” of this manual, which describes the
base class from which the UI_CURSOR class is derived.

“Chapter 13—UI_EVENT_MANAGER” of this manual, which
describes the operation (e.g., addition, subtraction, state change) of

device classes within the event manager.

“Chapter 18—UI_MS_MOUSE” of this manual, which describes an
additional device derived from the UI_DEVICE class.

Chapter 2 — UI_CURSOR 17

UI_CURSOR::UI_CURSOR

18

Syntax

Remarks

Example

#include <ui_evt.hpp>

UI_CURSOR::Ul_CURSOR(USHORT initialState = D_OFF);

This constructor returns a pointer to a new UI_CURSOR class object.

It should be called after the following class constructors have been
called:

1—UI_DOS_BGI_DISPLAY or UI_DOS_TEXT DISPLAY, then
2—UI_EVENT MANAGER

NOTE: If the cursor device is attached to the event manager, it will
automatically be destroyed when the event manager is destroyed.

e initialState,, is the initial state of the cursor device. The cursor
device may be set to one of the following states (defined in
UI_EVT.HPP):

D_OFF—Initializes the cursor to a non-blinking state. In this
state, the cursor is not shown on the screen. (This is the
default value if no argument is provided.)

D_ON—Initializes the cursor to a blinking state.

The state of the UI_CURSOR device can be changed at run-time using
the UI_EVENT_MANAGER::DeviceState function call.

#include <ui_evt.hpp>
ExampleFunctioni()
{

UI_DOS_TEXT DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

// Initialize the cursor.

UI_CURSOR *cursor = new UI_CURSOR;
eventManager + cursor;

Zinc Interface Library - Programmer’s Reference

ExampleFunction2()

// Attach the devices directly to the event manager.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

Ul_CURSOR:: ~ Ul_CURSOR

Syntax #include <ui_evt.hpp>

virtual UI_CURSOR:: ~ UI_CURSOR (void);

Remarks This virtual destructor destroys the class information associated with the
UI_CURSOR object. Care should be taken to only destroy a cursor
device that is not attached to the event manager.

Example #include <ui_evt.hpp>
ExampleFunctioni ()
{

UI_DOS_TEXT _DISPLAY display;
UI_EVENT_MANAGER eventManager (100, display);

// Initialize the cursor.
UI_CURSOR *cursor = new UI_CURSOR;
eventManager + cursor;

// Remove the cursor from the event manager, then call
// its destructor.

eventManager - cursor;

delete cursor;

Chapter 2 — Ul_CURSOR 19

%xampleFunctionZ()

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_ KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

)/ This automatically calls the cursor destructor.
delete eventManager;
delete display;

Zinc Interface Library — Programmer’s Reference

CHAPTER 3 - Ul_DATE

Overview The UI_DATE class is a lower-level class used to store year, month, day
and day-of-week date information. It is not a window object. (See
“Chapter 28—UIW_DATE” of this manual for information about the
date window object.) The public members of the Ul _DATE class
(declared in UI_GEN.HPP) are:

class UI_DATE

{
public:
UI_DATE(void);
UI_DATE(int packedDate);
UI_DATE(int year, int month, int day);
UI_DATE(const char *string, USHORT thlags = DTF_NO_FLAGS) ;
virtual “UI_DATE(void);

void Export(void);

void Export(int packedDate),

void Export(int *year, int *month, int *day,
int *dayOfWeek = NULL);

void Export(char *string, int maxLength,
USHORT dtFlags = DTF_NO_FLAGS) ;

void Import(void);

int Import(int packedDate);

int Import(int year, int month, int day);

int Import(const char *string,
USHORT dtFlags = DTF_NO FLAGS)

static void NameTablesSet (DATE TEXT *monthTablePtr = NULL,
DATE_TEXT *dayTablePtr = NULL);

int operator > (UI_DATE& rightOperand);

int operator < (UI_DATE& rightOperand);

int operator == (UT_DATE& rightOperand);
};

See also The example file XDATE.CPP, which gives a complete example of the
UI_DATE class.

“Chapter 23—UI_TIME” of this manual, which describes a similar low-
level class that maintains time information.

“Chapter 28—UIW_DATE?” of this manual, which describes a high-level

window object that uses the UI_DATE class to store display
information.

Chapter 3 - Ul_DATE 21

UI_DATE::Ul_DATE

Syntax

Remarks

#include <ui_gen.hpp>

UI_DATE::UI_DATE(void);

or

UI_DATE::UI_DATE(int packedDate);

or

UI_DATE::UI_DATE(int year, int month, int day);

or

UI_DATE::UI_DATE(const char *string,

USHORT dtFlags = DTF_NO_FLAGS);

These overloaded constructors return a pointer to a new UI_DATE
class object.

The first overloaded constructor takes no arguments. It sets the date
information according to the system’s date.

The second overloaded constructor uses a packed integer argument to
specify the default date.

packedDate,, is a packed representation of the date (whose format
is the same as MS-DOS file dates). This argument is packed
according to the following bit pattern:

bits 0-4 specify the day,
bits 5-8 specify the month, and

bits 9-15 specify the year minus 1980 (e.g., a value of 5 means
1985).

The third overloaded constructor uses integer arguments to specify the
default date.

year, is the year. This argument must be either 0, if no year value
is to be used with the date, or a value in a range from 100 to
32,767.

month,, is the month. This argument must be either 0, if no month
value is to be used with the date, or a value in a range from 1
(January) to 12 (December).

Zinc Interface Library - Programmer’s Reference

e day, is the day. This argument must be either 0, if no day value is
to be used with the date, or a value in a range from 1 to 31 and
should be valid for the specified month and year.

The fourth overloaded constructor uses an ascii string argument to
specify the default date. The following algorithm is used to determine
the proper order and meaning of date values:

1—Any number greater than 31 is assumed to be the year.

2—If the number is less than 100, 1900 is added to the value. Year
values below 100 are not allowed in the UI_DATE class.

3—Any number between 13 and 31 is assumed to be the day. In
ambiguous situations where both the day and month values are less
than 13, the country code date format (e.g., DTF_US_FORMAT,
DTF_JAPANESE_FORMAT) is used to decide the order of date
values.

e string,, is an ascii string that contains the date information.

e dtFlags,, gives information on how to interpret the date string. The
following flags (declared in UI_GEN.HPP) override the country
dependent information (supplied by all DOS based systems):

DTF_ALPHA_MONTH—Forces the month value to interpreted
in alphabetic form. For example, if the DTF_ALPHA _-
MONTH flag were set, an ascii date such as "12-4-1900" would
be invalid, since “12” is not an alphabetic month.

DTF_EUROPEAN_FORMAT—Forces the date to be
interpreted in the European format (i.e., day/month/year),
regardless of the default country information.

DTF_JAPANESE_FORMAT—Forces the date to be interpreted
in the Japanese format (i.e., year/month/day), regardless of the
default country information.

DTF_MILITARY_FORMAT—Forces the date to be interpreted
in the U.S. Military format (i.e., day/month/year where month is
a 3 letter abbreviated word), regardless of the default country
information.

Chapter 3 - UI_DATE 23

UI_DATE:: ~ Ul_DATE

Example

DTF_NO_FLAGS—Does not associate any special flags with the
UI_DATE class object. In this case, the ascii date will be
interpreted using the default country information. This flag
should not be used in conjunction with any other DTF flag.

DTF_SYSTEM—Fills a blank date with the system date. For
example, if a blank ascii date were specified by the programmer
and the DTF_SYSTEM flag were set, then the date would be
set to the system date.

DTF_US_FORMAT—Forces the date to be interpreted in the
U.S. format (i.e., month/day/year), regardless of the default
country information.

#include <ui_gen.hpp>
ExampleFunctioni ()

UI_DATE dateil; // System date initialization.
UI_DATE date2(1990, 1, 1); // Integer initialization.
UI_DATE *date3 = /4 String initialization.

H

new UI_DATE("Jan. 1, 1990")

24

Syntax

Remarks

#include <ui_gen.hpp>

virtual UI_DATE:: ~ UI_DATE(void);

This virtual destructor destroys the class information associated with the
UI_DATE object.

Zinc Interface Library - Programmer’s Reference

Example #include <ui_gen.hpp>
ExampleFunctioni ()
{

UI_DATE dateil; // System date initialization.
UI_DATE date2(1990, 1, 1); // Integer initialization.
UI_DATE *date3 = // String initialization.

new UI_DATE("Jan. 1, 1990");

&elete date3;
// The destructors for datel and date2 are automatically called
// when the scope of this function ends.

Ul_DATE::Export

Syntax #include <ui_gen.hpp>

void UI_DATE::Export(void);
or

void UI_DATE::Export(int *packedDate);
or

void UI_DATE::Export(int *year, int *month, int *day,
int *dayOfWeek = 0);
or

void UI_DATE::Export(char *string, int maxLength,
USHORT dtFlags = DTF_NO_FLAGS);

Remarks The first overloaded function sets the system date according to the
UI_DATE object’s date information. This function only works on
environments where the system date can be set.

The second overloaded function returns date information through a
single packed integer argument.

o packedDate,,,, is a packed representation of the date (whose format
is the same as MS-DOS file dates). This argument is packed
according to the following bit pattern:

bits 0-4 specify the day,

bits 5-8 specify the month, and

bits 9-15 specify the year minus 1980 (e.g., a value of 5 means
1985).

Chapter 3 — Ul_DATE 25

26

The third overloaded function returns date information through four
integer arguments.

year,,, is a pointer to the year. If this argument is NULL, no year
information is returned. If there is no year associated with the date,
this argument will be 0. Otherwise, this argument will be a value
within the range 100 to 32,767.

month,,, is a pointer to the month. If this argument is NULL, no
month information is returned. If there is no month associated with
the date, this argument will be 0. Otherwise, this argument will be
a value within the range 1 (January) to 12 (December).

day,o, is @ pointer to the day. If this argument is NULL, no day
information is returned. If there is no day associated with the date,
this argument will be 0. Otherwise, this argument will be a value
within the range 1 to 31.

dayOfWeek,,,,. is a pointer to the day-of-week. If this argument is
NULL, no day-of-week information is returned. If the year, month
and day values are all present this argument will be a value within
the range 1 (Sunday) to 7 (Saturday). Otherwise, this argument will
be 0.

The fourth overloaded function returns the date information through
the string argument.

SIring,0. i @ pointer to a string that gets the ascii formatted date.
This string must be at least maxLength in size.

maxLength,, is the maximum character length the ascii formatted
date may occupy. For example, if maxLength were set to 15 and a
long date of "December 4, 1980" were formatted, the final formatted
date would be converted to "Dec. 4, 1980" since the original string
was too long to fit in the specified buffer.

dtFlags,, gives formatting information about the return ascii date.

The following flags (declared in UI_GEN.HPP) override the country

dependant information (supplied by all DOS based systems):
DTF_ALPHA_MONTH—Formats the month as an ascii string
value. Some example dates with the DTF_ALPHA MONTH

Zinc Interface Library - Programmer’s Reference

Chapter 3 — Ul_DATE

flag set are: "March 28, 1990," "December 4, 1980" and
"Januaﬁy 3, 2003."

DTF_DASH—Separates each date variable with a dash,
regardless of the default country date separator. Some example
dates with the DTF_DASH flag set are: "3-28-1990," "12-04-
1980" and "1-3-2003."

DTF_DAY_OF_WEEK—Adds an ascii string day-of-week value
to the date. Some example dates with the DTF_DAY_OF -
WEEK flag set are: "Wednesday March 28, 1990," "Thursday
December 4, 1980" and "Saturday January 3, 2003."

DTF_EUROPEAN_FORMAT—Forces the date to be formatted
in the European format (i.e., day/month/year), regardless of the
default country information. Some example dates with the
DTF_EUROPEAN_FORMAT flag set are: "28/3/1990," "4
December, 1980" and "3 Jan., 2003."

DTF_JAPANESE_FORMAT—Forces the date to be formatted
in the Japanese format (i.e., year/month/day), regardless of the
default country information. Some example dates with the
DTF_JAPANESE_FORMAT flag set are: "1990/3/28," "1980
December 4" and "2003 Jan. 3."

DTF_MILITARY_FORMAT—Forces the date to be formatted
in the U.S. Military format (i.e., day/month/jyear where month is
a 3 letter abbreviated word), regardless of the default country
information. Some example dates with the DTF_MILITARY _-
FORMAT flag set (army style) are: "28 Mar 1900," "04 Dec
1980," and "03 Jan 2003." Some example dates with the DTF_-
MILITARY and DTF_UPPER_CASE flags set (navy style) are:
"28 DEC 1900," "04 DEC 1980," and "03 JAN 2003."

DTF_NO_FLAGS—Does not associate any special flags with the
format function. In this case, the ascii date is formatted using
the default country information. For example, the U.S. date
"DEC 4 1989" would be shown as "4 DEC 1989" if default
country information specified a European format, or "1989
DEC 4" if the default country information specified a Japanese
format. This flag should not be used in conjunction with any
other DTF flag.

27

28

Example

DTF_SHORT_DAY—Adds a shortened day-of-week to the date.
Some example dates with the DTF_SHORT _DAY flag set are:
"Wed. March 28, 1990," "Thurs. December 4, 1980" and "Sat.
January 3, 2003."

DTF_SHORT_MONTH—Adds a shortened alphanumeric
month to the date. Some example dates with the DTF -
SHORT_MONTH flag set are: "Mar. 28, 1990," "Dec. 4, 1980"
and "Jan. 3, 2003."

DTF_SHORT_YEAR—Forces the year to be formatted as a 2
digit value. Some example dates with the DTF_SHORT -
YEAR flag set are: "3/28/90," "December 4, 80" and "Jan. 3, 89."

DTF_SLASH—Separates each date value with a slash,
regardless of the default country date separator. Some example
dates with the DTF_SLASH flag set are: "3/28/90," "12/04/1900"
and "1/3/2003."

DTF_UPPER_CASE—Converts the alphanumeric date to
upper-case. Some example dates with the DTF_UPPER_CASE
flag set are: "MARCH 28, 1990," "DEC. 4, 1980" and
"SATURDAY JAN. 3, 2003."

DTF_US_FORMAT—Forces the date to be formatted in the
U.S. format (i.e., month/dayjyear), regardless of the default
country information. Some example dates with the DTF_US_-
FORMAT flag set are: "March 28, 1990," "12/4/1980" and
"Jan 3, 2003."

DTF_ZERO_FILL—Forces the year, month and day values to
be zero filled when their values are less than 10. Some example
dates with the DTF_ZERO_FILL flag set are: "March 08,
1990," "12/04/1980" and "01/03/2003."

#include <ui_gen.hpp>

ExampleFunctioni ()

t UI_DATE date; // Initialize a system date.
// Print out the date in various forms.
int packedDate;

date. Export(&packedoate)
printf("Packed date value: %x\n", packedDate);

Zinc Interface Library - Programmer’s Reference

int year, month, day;

date.Export(&year, &month, &day);

printf("Integer date value: year-%d, month-%d, day-%d\n",
year, month, day);

char asciiDate[128];
date.Export(asciiDate, 128, DTF_NO_FLAGS);
printf("Ascii date value: %s", asciiDate);

/] The destructor for date is automatically called when the
/! scope of this function ends.

Ul_DATE::Import

Syntax

Remarks

#include <ui_gen.hpp>

void Import(void);
or
int Import(int packedDate);
or
int Import(int year, int month, int day);
or
int Import(const char *string,
USHORT dtFlags = DTF_NO_FLAGS);

The first overloaded function sets the date information according to the
system date.

The second overloaded function sets the date information through a
single packed integer argument.

o returnValue,, is 0 (DTI_OK) if the packed date value was
successfully imported. Otherwise, the return value is
DTI_INVALID.

o packedDate,, is a packed representation of the date (whose format
is the same as MS-DOS file dates). This argument is packed
according to the following bit pattern:

bits 0-4 specify the day,

bits 5-8 specify the month, and

bits 9-15 specify the year minus 1980 (e.g., a value of 5 means
1985).

Chapter 3 — UI_DATE 29

The third overloaded function sets the date information according to
specified integer arguments.

* returnValue,,, is 0 (DTI_OK) if the date values were successfully
imported. Otherwise, the return value is DTI_INVALID.

* year, is the year. This argument must be 0 if no year value is to be
used with the date, or a value in a range from 100 to 32,767.

* month, is the month. This argument must be 0 if no month value
is to be used with the date, or a value in a range from 1 (January)
to 12 (December).

* day, is the day. This argument must be 0 if no day value is to be
used with the date, or a value in a range from 1 to 31 and should
be valid for the specified month and year.

The fourth overloaded function sets the date information according to
an ascii string. The following algorithm is used to determine the proper
order and meaning of date values:

1—Any number greater than 31 is assumed to be the year.

2—If the number is less than 100, 1900 is added to the value. Year
values below 100 are not allowed in the UI_DATE class.

3—Any number between 13 and 31 is assumed to be the day. In
ambiguous situations where both the day and month values are less
than 13, the country code date format (e.g., DTF_US_FORMAT,
DTF_JAPANESE_FORMAT) is used to decide the order of date
values.

* retunValue,, is 0 (DTI_OK) if the ascii string parsed to a valid
date. Otherwise, one of the following error codes (defined in
UI_GEN.HPP) is returned:

DTI_INVALID—The date was specified in an invalid format.

For example, the date "Feb. 33, 1990" is invalid since there are
not 33 days in February.

30 Zinc Interface Library — Programmer’s Reference

Chapter 3 — Ul_DATE

DTI_AMBIGUOUS—The month value was ambiguous. For
example, the date "j 20 1990" has an ambiguous month since j’
could apply to "January,” "June," or "July."

DTI_VALUE_MISSING—A date value was not present in the
ascii string and the DTF_SYSTEM flag has not been set.

DTI_INVALID_NAME—The ascii month or day-of-week name
did not match any of the names contained in the day or month
name tables (see the UI_DATE::NameTablesSet section below).

string,, is a pointer to the ascii date.

dtFlags,, gives information on how to interpret the date string. The
following flags (declared in UI_GEN.HPP) override the country
dependant information (supplied by all DOS based systems):

DTF_EUROPEAN_FORMAT—Forces the date to be inter-
preted in the European format (i.e., day/month/year), regardless
of the default country information.

DTF_FORCE_ALPHA_MONTH—Forces the date to contain
the month value in alpha form. For example, if the DTF_-
ALPHA MONTH flag were set, an ascii date such as "12-4-
1900" would be invalid, since "12" is not an alphabetic month.

DTF_JAPANESE_FORMAT—Forces the date to be interpreted
in the Japanese format (i.e., year/month/day), regardless of the
default country information.

DTF_MILITARY_FORMAT—Forces the date to be interpreted
in the U.S. Military format (i.e., day/month/year where month is
a 3 letter abbreviated word), regardless of the default country
information.

DTF_NO_FLAGS—Does not associate any special flags with the
UI_DATE class object. In this case, the ascii date will be
interpreted using the default country information. This flag
should not be used in conjunction with any other DTF flag.

DTF_SYSTEM—Fills a blank date with the system date. For
example, if a blank date were specified by the programmer and

31

Example

the DT_SYSTEM flag were set, then the date would be set to
the system date.

DTF_US_FORMAT—Forces the ascii date to be interpreted in
the U.S. format (i.e., month/day/year), regardless of the default
country information.

#include <ui_gen.hpp>
%xampleFunction1()
UI_DATE date; // Initialize a system date.

// Import the date in various forms, then print out
// the results.

char asciiDate[128];

date.Import(1990, 1, 1);

date.Export(asciiDate, 128, DTF_NO_FLAGS);
printf("Ascii date value: %s\n", asciiDate);

date.Import("1-1-1990");
date.Exeort(asciioate, 128, DTF_MILITARY_FORMAT) ;
printf("Ascii date value: %s\n" asciiDate);

// The destructor for date is automatically called when the
// scope of this function ends.

UI_DATE::NameTablesSet

32

Syntax

Remarks

#include <ui_gen.hpp>

static void UI_DATE::NameTablesSet(
const char **monthTable = NULL,
const char **dayTable = NULL);

This static function re-defines the month and day name tables used to
give the ascii representation of a date. The default month and day
tables are:

?tatic char *_monthNames[] =

*Jan.", *January",
*Feb.", *February",
Mar., "March",
"Apr.", *April*,
"May."*, *May*,,
*Jun.", *June’,
"Jul.", *July",
'Aug.“ "August",
"Sept. ", “September",

Zinc Interface Library — Programmer’s Reference

};

'Oct.",
"Nov.",
‘Dec.",

"October",
"November",
*December"”,

static char *_dayNames[] =
{

};

*Sun.",
“Mon. "

"Sunday",
'Monday“
"Tuesday”,
"Wednesday",
"Thursday",
"Friday",
"Saturday"

monthTable,, is a pointer to the new month table. This table must
be allocated by the programmer and remain active throughout
program execution. If this argument is NULL, monthTable is reset

to point to the default month table (shown above).

dayTable,, is a pointer to the new day table. This table must be
allocated by the programmer and remain active throughout program
execution. If this argument is NULL, dayTable is reset to point to

the default day table (shown above).

Example #include <ui_gen.hpp>

static char *_spanishMonthNames[] =

}

static char *_spanishDayNames[] =
{

b

Chapter 3 — Ul_DATE

"Ene."
"Feb."
"Mar."
"Abr."
“May."
*Jun. "
'Jul.:

"Dom.",
"Lun.",
"Mar.",
"Mier.",
‘Juev."',
Nier.t,

*Enero",
"Febrero",
"Marzo",
"Abril*,
‘Mayo", ,
*Junio®,
'Julio‘i
"Agosto”,
“Septiembre”,
"Octubre”,
"Noviembre",
*Diciembre”,

"Domingo*,
"Lunes”,
"Martes”,
"Miercoles",
"Jueves"
"Viernes"®,
"Sabado”

33

ExampleFunction1()
// Redefine the date name tables.

UI_DATE: :NameTablesSet (_spanishMonthNames,
_spanishDayNames) ;

}/ Restore the date name tables.
UI_DATE: :NameTablesSet (NULL, NULL);

UI_DATE::operator >

Syntax #include <ui_gen.hpp>

int UI_DATE::.operator > (UI_DATE& rightOperand);

Remarks This operator overload determines whether the UI_DATE object is
chronologically greater than the date specified by rightOperand.

» returnValue,, is TRUE if the UI_DATE object is chronologically
greater than rightOperand. Otherwise, this value is FALSE.

» rightOperand,, is the UI_DATE object against which to compare.

Example #include <ui_gen.hpp>
?xampleFunction1()

UI_DATE currentDate; // Initialize a system date.
UI_DATE newYears1990('Jan. 1, 1990");
UI_DATE twentyFirstCentury(*Jan. 1, 2001");

// Check the dates.

if (currentDate == newYears1990)
printf("It’s new years day 1990.\n")

else if (currentDate > twentyFirstCentury ||
currentDate == twentyFirstCentury)

5 printf("It’s the twenty first century.\n");

else

printf(*It’s not the twenty first century.\n");

34 Zinc Interface Library — Programmer’s Reference

Ul_DATE::operator <

Syntax #include <ui_gen.hpp>

int UI_DATE::operator < (UI_DATE& rightOperand),

Remarks This operator overload determines whether the UI_DATE object is
chronologically less than the date specified by rightOperand.

e returnValue,, is TRUE if the UI_DATE object is chronologically
less than rightOperand. Otherwise, this value is FALSE.

rightOperand,, is the UI_DATE object against which to compare.

Example #include <ui_gen.hpp>
ExampleFunctioni()
{

UI_DATE currentDate; // Initialize a system date.
UI_DATE newYears1990(‘Jan. 1, 1990");
UI_DATE twentyFirstCentury(*Jan. 1, 2001");

// Check the dates.

if (currentDate == newYears1990)
printf("It’'s new years day 1990.\n")

else if (currentDate < twentyFirstCentury)
printf("It’s not the twenty first century.\n");

else
printf("It’'s the twenty first century.\n");

Ul_DATE::operator ==

Syntax #include <ui_gen.hpp>
int UI_DATE::operator == (UI_DATE& rightOperand);
Remarks This operator overload determines whether the UI_DATE object is
chronologically equal to the date specified by rightOperand.

o returnValue, is TRUE if the UI_DATE object is chronologically
equal to rightOperand. Otherwise, this value is FALSE.

o rightOperand,, is the UI_DATE object against which to compare.

Chapter 3 — UI_DATE 35

36

Example

#include <ui_gen.hpp>
ExampleFunction1()
{

UI_DATE currentDate; // Initialize a system date.
UI_DATE newYears1990(‘Jan. 1, 1990*);
UI_DATE twentyFirstCentury(*Jan. 1, 2001");

// Check the dates.

if (currentDate == newYears1990)
printf("It’s new years day 1990.\n")

else if (currentDate < twentyFirstCentury)
printf("It’s not the twenty first century.\n");

1se
printf("It’s the twenty first century.\n");

Zinc Interface Library - Programmer’s Reference

CHAPTER 4 - Ul_DEVICE

Overview The UI_DEVICE class is an abstract class that defines basic information
associated with input devices (e.g., keyboard, mouse). Since the
UI_DEVICE class is abstract, it cannot be used as a constructed class.
Rather, derived classes, such as UI_BIOS_KEYBOARD, UI_CURSOR,
or UL_MOUSE, must be used. The figure below shows the device
object hierarchy:

[DEVICE OBJECT HIERARCHY I

UI_LEVENT_MANAGER"***** -—- U| DEVICE

N

[Ul_BIOS KEYBOARIll ru: MS MOUSEI [un CURSOR

(other programmer
defined device
objects)

Classes derived from the UI_DEVICE base class include:

UI_BIOS_KEYBOARD—A BIOS level polled keyboard interface
that retrieves keyboard information from the end-user.

UI_MS_MOUSE—An interrupt driven mouse that receives mouse
information from the end-user.

UI_CURSOR—A blinking cursor shown on the screen. In graphics
mode, this device paints a blinking cursor on the screen. In text
mode, this device is implemented as the hardware cursor.

Other programmer defined device objects—Any other programmer
defined device that conforms to the operating protocol defined by
the UI_DEVICE base class.

Input devices are attached to the event manager at run-time by the
programmer. Once a device is attached, it feeds input information to

Chapter 4 — Ul_DEVICE 37

38

See also

the event queue when polled by the event manager, or it feeds directly
to the event queue if it is an interrupt device.

Other chapters in this manual contain more information about the
classes derived from the UI_DEVICE base class as well as their
construction, destruction and use within the event manager (see the
references below).

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the operation of device classes within the event
manager.

“Chapter 1—UI_BIOS_KEYBOARD?” of this manual, which describes
a device derived from the UI_DEVICE class.

“Chapter 2—UI_CURSOR?” of this manual, which describes a device
derived from the UI_DEVICE class.

“Chapter 9—UI_ELEMENT” of this manual, which describes the base
class from which the UI_DEVICE class is derived.

“Chapter 13—UI_EVENT_MANAGER” of this manual, which

describes the operation (e.g., addition, subtraction, state change) of
device classes within the event manager.

“Chapter 18—UI_MS_MOUSE” of this manual, which describes a
device derived from the UI_DEVICE class.

Zinc Interface Library - Programmer’s Reference

CHAPTER 5 - UI_DISPLAY

Overview The UI_DISPLAY class is an abstract class that defines basic
information associated with the screen display. Since the UI_DISPLAY
class is abstract, it cannot be used as a constructed class. Rather,
derived classes, such as Ul_DOS_TEXT_DISPLAY or UI_DOS_BGI_-
DISPLAY must be used. The graphic image below shows the display

object hierarchy:
|DISPLAY OBJECT HIERARCHY I

UI_DOS_BGI_DISPLAY | [UI_DOS_TEXT_DISPLALI

(other programmer
defined display
objects)

Classes derived from the UI_DISPLAY base class include:

UI_DOS_BGI_DISPLAY—A graphics display that uses the Turbo
C®++ BGI graphics library package to display information to the
screen. The UI_DOS_BGI_DISPLAY class provides support for
CGA®, EGA®, VGA® and Hercules® monochrome display adapters
running in graphics mode.

UI_DOS_TEXT_DISPLAY—A text display that writes the display
information to screen memory. The UI_DOS_TEXT_ DISPLAY
class provides support for MDA®, CGA, EGA and VGA display
adapters running in text mode. This includes the following modes
of operation:

25 line x 80 column mode,
25 line x 40 column mode,
43 line x 80 column mode and
50 line x 80 column mode.

Chapter 5 — Ul_DISPLAY 39

40

See also

This class also contains support for snow checking (cga monitors)
and IBM TopView® (which supports operation in Microsoft
Windows® and Quarterdeck DESQview® environments).

Other programmer defined screen display objects—Any other
programmer defined display object that conforms to the operating
protocol defined by the UI_DISPLAY base class.

The definition of multiple display classes allows the application program
to be abstract in its screen display. Thus, one set of source code can be
used to produce output for both graphics- and text-based environments.

Other chapters in this manual contain more information about the
classes derived from the UI_DISPLAY base class as well as their
construction, destruction and use within the Zinc Interface Library (see
the references below).

“Chapter 2—Conceptual Design” of the Programmer’s Guide which
gives an overview to the operation of the screen display.

“Chapter 6—UI_DOS_BGI_DISPLAY” of this manual which describes
a graphics display derived from the UI_DISPLAY class.

“Chapter 7—UI_DOS_TEXT_DISPLAY” of this manual which
describes a text display derived from the UI_DISPLAY class.

Zinc Interface Library — Programmer’s Reference

CHAPTER 6 - Ul_DOS_BGI_DISPLAY

Overview The UI_DOS_BGI_DISPLAY class implements a graphics display that
uses the Turbo C++ BGI graphics library package to display all
information to the screen. The public members of the UI_DISPLAY
and UI_DOS_BGI_DISPLAY classes (declared in UI_DSPHPP) are:

class UI_DISPLAY

public:
static UCHAR usingActiveDisplay;
static UCHAR usingAlternateDisplay;
UCHAR installed;
UCHAR isMono;
UCHAR isActiveDisplay;
const UCHAR isText;
const UCHAR cellHeight;
const UCHAR cellWidth;
int columns;
int lines;

) void RegionDefine(int screenID, UI_REGION ®ion);
L

class UI_DOS_BGI_DISPLAY : public UI_DISPLAY

public:
UI_DOS_BGI_DISPLAY(void);
virtual “UT_DOS_BGI_DISPLAY(void);

void Bitmap(int screenID, const UI_REGION ®ion,
const USHORT *bitmap, const UI_PALETTE *palette,
int fillBackground = TRUE);

void Fill(int screenID, const UI_REGION ®ion,
const UI_PALETTE *palette);

void FillXOR(const UI_REGION ®ion);

void Line(int screenID, int left, int top, int right,
int bottom, const UI_PALETTE *palette, int width = 1);

void Rectangle(int screenID, const UI_REGION ®ion,
const UI_PALETTE *palette, int width = 1);

void RectangIleXOR(const UI_REGION ®ion);

void RegionConvert(UI_REGION ®ion);

void Text(int screenID, int left, int top,
const char *text, const UI_PALETTE *palette,
int length = -1, int fillBackground = TRUE);

int TextHeight(const char *string);

int TextWidth(const char *string);

b

e cellHeight is the pixel height of a cell. The cell height is determined
by the default font setting.

e cellWidth is the pixel width of a cell. The cell width is determined
by the default font setting.

Chapter 6 — Ul_DOS_BGI_DISPLAY 41

See also

e columns gives the total pixel width of the screen display. For
example, if the constructed display were 480 lines x 640 columns,
the value of columns would be 640.

e installed is TRUE if the display is correctly installed. Otherwise,
this value is FALSE.

» isActiveDisplay is TRUE if the specified display class object is the
active display. If it is the alternate display, this value is FALSE.

e isMono is not used by the graphics display class.

o isText is always FALSE for Ul_DOS_BGI_DISPLAY class objects.

o lines gives the total pixel height of the screen display. For example,
if the constructed display were 480 lines x 640 columns, the value
of lines would be 480.

» usingActiveDisplay is TRUE if the Zinc Interface Library has
constructed an active display. The first display created in an
application is the active (primary) display.

 usingAlternateDisplay is TRUE if the Zinc Interface Library has

constructed an alternate display. The second display created in an
application is the alternate (secondary) display.

The example file XBGIDISP.CPP, which gives a complete example of
the UI_DOS_BGI_DISPLAY class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide which
gives an overview to the operation of the screen display.

“Chapter 5—UI_DISPLAY” of this manual which describes the base
class from which the UI_DOS_BGI_DISPLAY class is derived.

“Chapter 7—UI_DOS_TEXT_DISPLAY” of this manual which
describes a text display derived from the UI_DISPLAY class.

Zinc Interface Library — Programmer’s Reference

Ul_DOS_BGI_DISPLAY::Ul_DOS_BGI_DISPLAY

Syntax #include <ui_dsp.hpp>

UI_DOS_BGI_DISPLAY::UI_DOS_BGI_DISPLAY (void);

Remarks This constructor returns a pointer to a new Ul_DOS_BGI_DISPLAY
object. When a new UI_DOS_BGI_DISPLAY class is constructed, the
system finds the associated BGI device driver, then clears the screen
display to the background color and pattern specified by the global
palette variable _backgroundPalette (See “Chapter 19—UI_PALETTE”
of this manual).

If a primary display class has already been constructed, this function
constructs a secondary graphics display using an alternate display (if a
second display exists and it is the graphics display). This provides the
low-level implementation of dual-monitor support.

Example #include <ui_dsp.hpp>
ExampleFunctioni()

// Call the BGI display constructor.
UI_DOS_BGI_DISPLAY display;

}
ExampleFunction2(int graphics)

// Put a level of abstraction into the call.
UI_DISPLAY *display;
display = (graphics) ?

(UI_DISPLAY *)new UI_DOS_BGI DISPLAY :

(UI_DISPLAY *)new UI_DOS_TEXT_DISPLAY(LINES_AUTO);

}
ExampleFunction3()
// Create two displays (dual screen monitor support).
UI_DOS_BGI DISPLAY display1;
UI_DOS_TEXT_DISPLAY *display2 = new UI_DOS_TEXT_DISPLAY;
}

Chapter 6 - Ul_DOS_BGI_DISPLAY 43

UI_DOS_BGI_DISPLAY:: ~ Ul_DOS_BGI_DISPLAY

Syntax

Remarks

Example

#include <ui_dsp.hpp>

virtual UI_DOS_BGI_DISPLAY:: ~ UI_DOS_BGI_DISPLAY (void);

This virtual destructor destroys the class information associated with the
UI_DOS_BGI_DISPLAY object and clears the screen display.

#include <ui_dsp.hpp>
ExampleFunction1()
UI_DOS_BGI_DISPLAY display;

)/ The display destructor is called automatically when
// the scope of this function ends.

ExampleFunction2(int graphics)

UI_DISPLAY *display;
display = (graphics) ?
(UI_DISPLAY *)new UI_DOS_BGI DISPLAY :
(UI_DISPLAY *)new UI_DOS_TEXT_DISPLAY (LINES_AUTO);

}/ Call the display destructor.
delete display;

}
?xampleFunctions()

UI_DOS_BGI DISPLAY disp1a¥1;
UI_DOS_TEXT_DISPLAY *display2 = new UI_DOS_TEXT_DISPLAY;

// Delete display2 since it is a UI_DOS_BGI_DISPLAY class
// pointer.

delete display2;

il D13p1ay1 is destroyed when the scope of this function
// ends.

Zinc Interface Library - Programmer’s Reference

UI_DOS_BGI_DISPLAY::Bitmap

Syntax #include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::Bitmap(int screenlD,
const Ul_REGION ®ion, const USHORT *bitmap,
const UI_PALETTE *palette, int fillBackground);

Remarks This function draws a bitmap image to the screen at the coordinates
specified by region. A bitmap is defined by an array of USHORT
(unsigned short) values. Each bitmap must be constructed in the
following manner:

1—The first USHORT value must contain the width of the bitmap
in pixels.

2—The second USHORT value must contain the height of the
bitmap in pixels.

3—all remaining USHORT values contain the actual bitmap
pattern. Each of these values is evaluated from high to low bit.

For example, a 16 x 4 bitmap (16 columns, 4 lines) that draws a
rectangle could be represented in the following manner:

// This is the bitmap for a rectangle.
USHORT rectangleBitmap[] =
{

16, // Width of the bitmap pattern.
4, // Height of the bitmap pattern.
OXFFFF' || eescsseccccsccse
0x8001, /] e .
0x8001, 1w X
OXFFFF // eecevccecsscccee

};

There are no restrictions on the height and width of a bitmap image.
The width however, is aligned along 16 bit boundaries. For example, if
a 4 x 4 bitmap were defined and contained a similar pattern to the
bitmap shown above, the following declaration could be made:

// This is the bitmap for a box.

USHORT boxBitmap[] =

{
4, // Width of the bitmap pattern.
4, // Height of the bitmap pattern.

Chapter 6 — Ul_DOS_BGI_DISPLAY 45

46

0xFO000, /] eeee Only the top four bits
0x9000, /] o o of these values are
0x9000, /] o o evaluated.

0xF000 /] eeee

};

Similarly, a 32 x 4 rectangle bitmap would be represented in the
following manner:

// This is the bitmap for 32 pixel wide rectangle.
USHORT rectangleBitmap[] =

{
32, // Width of the bitmap pattern.
s // Height of the bitmap pattern.
// Each line is represented by
// 2 USHORTS.
OXFFFF’ OXFFFF, || e0cccececcccsccccsccccscccccccnne
0x8000, 0x0001, 1] .
0x8000, 0x0001, /] e .
} OXFFFF’ OxFFFF || veeccecescccsccccccscccccscscsscsncs
!

The highlight bits (i.e., those bits whose values are 1) of the bitmap are
drawn with the foreground color of the palette argument. The non-
highlight bits (i.e., those bits whose values are 0) of the bitmap are
drawn with the background color of the palette argument if
fillBackground is set to TRUE. Otherwise, non-highlight bits are
ignored.

The constants BITMAP_HEIGHT and BITMAP_WIDTH are declared
to give array access to the height and width values of a specified bitmap.

Bitmaps do not have text screen equivalents. There is a UI_DOS_-
TEXT_DISPLAY::Bitmap function specified for the UI_DOS_TEXT -
DISPLAY class, but it is a stub. Thus the UI_DOS_BGI_DISPLAY::
Bitmap function should be used with caution.

e screenID,, is a screen object identification used to determine the
parts of the bitmap that can be updated to the screen. Only those
screen locations that match screenID are updated. (See “Chapter
5—UI_DISPLAY” of this manual for more information about
screen identifications.)

» region, is a reference pointer to the desired display region.
Region.left and region.top are pixel coordinate values that specify the
left-top corner position of the bitmap. Region.right and
region.bottom are pixel coordinate values that specify the right-
bottom corner position of the bitmap. Typically, the right and

Zinc Interface Library - Programmer’s Reference

bottom values will be the left-top values plus the bitmap’s respective
width and height.

e bitmap,, is the bitmap pattern to be displayed. The bitmap pattern
must follow the format discussed above.

e palette, is a pointer to the palette used when displaying the bitmap
pattern. The palette’s foreground color is used for all 1 specified
bits. The palette’s background color is used for all O specified bits
if fillBackground is set to TRUE.

e fillBackground,, is a flag indicating whether to fill the background
(i.e., all O bits) with the defined palette’s background color. If
fillBackground is set to TRUE, the background will be filled with
the palette’s background color. Otherwise, 0 bits are ignored.

Example #include <graphics.h> // include for graphics colors
#include <ui_dsp.hpp>

USHORT rectangleBitmap[] =

16, // Width
4, // Height
OxFFFF, 0x8001, 0x8001, OxFFFF // Bitmap pattern

i_PALETTE rectanglePalette =

'\260’, attrib(BLUE, LIGHTGRAY),
attrib(MONO NORMAL, MONO_BLACK) ,
SOLID FILL, attrib(BLUE “WHITE),
attrib(BW_ BLACK BW WHITE), attrib(GS BLACK, GS_WHITE)

—_—

H
%xampleFunction1()

// Draw a blue on white box to the screen.
UI_DOS_BGI_DISPLAY display;

// Draw a box to the left-top corner of the screen.

region.left = region.top = 0;

region.right = region.left + bitmap[BITMAP_WIDTH] - 1;

region.bottom = region.top + bitmap[BITMAP_HEIGHT] - 1;

display.Bitmap (ID_SCREEN, region, rectangleBitmap,
rectanglePalette, TRUE},

}

%SHORT boxBitmap[] =
8; // Width
8, // Height
OXFFOO' // [EE R NN NN
0x8100, 11 e .
0x8100, 1l .
0x8100, /] o .

Chapter 6 - Ul_DOS_BGI_DISPLAY 47

0x8100, /] o .
0x8100, /] o .
0x8100, /] e .
OxFFO0O0 /] ececcccce
}-
UI_PALETTE boxPalette =
{
'\260’, attrib(BLUE, LIGHTGRAY),
attrib (MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLUE, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)
}.
%éHORT xBitmap[] =
8, // Width
8, // Height
0x0000, /1
0x4200, /1] e *
0x2400, P e
0x1800, Ll oo
0x1800, /1l oo
0x2400, Ll =Lis e
0x4200, Ll @ *
) O0xFF00 i
Ul_PALETTE xPalette =
{
'\260’, attrib(BLUE, LIGHTGRAY),
attrib (MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLUE, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)
b
ExampleFunction2()
{
/] Construct the graphics display then draw a black box with
// a red 'X' to the screen. The first Bitmap() call fills
// the background and draws the box. The second Bitmap() call
// draws the ’X’.
UI_DOS_BGI_DISPLAY display;
// Define a unique region for the bitmaps.
display.RegionDefine(-1, region);
region.left = region.top = 0;
region.right = region.left + boxBitmap[BITMAP_WIDTH] - 1;
region.bottom = region.top + boxBitmap[BITMAP_HEIGHT] - 1;
display.Bitmap(-1, region, boxBitmap, boxPalette, TRUE};
) display.Bitmap(-1, region, xBitmap, xPalette, FALSE};

UI_DOS_BGI_DISPLAY::Fill

48

#include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::Fill(int screeniD,
const UI_REGION ®ion, const UI_PALETTE *palette);

Zinc Interface Library - Programmer’s Reference

Remarks This function fills a rectangular, two dimensional region on the screen
with the background color and pattern specified by palette. This
function uses the Turbo C++ bar() function with the following
modifications:

1—The screen display for all devices (e.g., the mouse and cursor)
are shut off before the specified region is filled. This prevents
devices from overwriting the screen display.

2—The region is clipped according to the screen identification.
This prevents writing to overlapping window regions.

3—The fill color is specified by the background portion of palette.

o screenID,, is a screen object identification used to determine the
parts of the fill region that can be updated to the screen. Only
those screen locations that match screenID are updated. (See
“Chapter 5—UI_DISPLAY” of this manual for more information
about screen identifications.)

e region, is a reference pointer to the desired fill region. Region.left
and region.top are pixel coordinate values that specify the left-top
corner position of the fill region. Region.right and region.bottom
values specify the right-bottom corner position of the fill region.

e palette, is a pointer to the palette argument used when filling the
screen region. The palette’s background color is used for the fill.

Example #include <graphics.h> // include for graphic colors.
#include <ui_dsp.hpp>

ExampleFunctioni ()
UI_DOS_BGI_DISPLAY display;

// Define the fill region.

UI_REGION region = { 100, 100, 200, 200 };
display.RegionDefine (ID_ SCREEN, region),

display Fill(ID_SCREEN, region, _backgroundPalette);

Chapter 6 - Ul_DOS_BGI_DISPLAY 49

UI_PALETTE palette =
{

'\260’, attrib(BLUE, LIGHTGRAY),
attrib(MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLUE, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

}s
ExampleFunction2()
UI_DOS_BGI_DISPLAY display;

// Fill the specified region. Notice the region is defined to
// be the whole screen, but only the region with the
// identification -1 will actually be updated.
UI_REGION region;
region.left = region.top = 0;
region.right = display.columns / 4;
region.bottom = display.lines / 4;
display.RegionDefine(-1, region);
region.right = display.columns - 1;
region.bottom = display.lines - 1;

} display.Fill(-1, region, palette);

ExampleFunction3()
UI_DOS_BGI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;

// Fill the whole screen with the background palette.
UI_REGION region;

region.left = region.top = 0;

region.right = display->columns - 1;

region.bottom = display->lines - 1;

// Make sure the full screen is defined.
display->RegionDefine(ID_SCREEN, region);
display->Fill(ID_SCREEN, region, _backgroundPalette);

UI_DOS_BGI_DISPLAY::FillXOR

Syntax #include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::FillXOR(
const UI_REGION ®ion);

50 Zinc Interface Library — Programmer’s Reference

Remarks This function XOR fills a rectangular, two dimensional region of the
screen. This function differs from the UI_DOS_BGI_DISPLAY::Fill
function in the following respects:

1—No screen identification is required. The UI_DOS_BGI_-
DISPLAY::FillXOR function automatically XOR fills the region,
independent of the screen identification for the region.

2—No palette is required. The XOR region is the opposite color
of the current screen color on the specified pixel locations. To
remove an XOR region, simply XOR the same region again.

This function differs from the UI_DOS_BGI_DISPLAY::RectangleXOR
function (described below), because it XOR fills the whole region, not
just the edge of the region.

e region;, is a reference pointer to the desired XOR region.
Region.left and region.top are pixel coordinate values that specify the
left-top corner position of the XOR region. Region.right and
region.bottom are pixel coordinate values that specify the right-
bottom corner position of the XOR region.

Example #include <ui_dsp.hpp>
ExampleFunction1()
UI_DOS_BGI_DISPLAY display;

}/ Fill an XOR region on the screen.
UI_REGION region = { 100, 100, 150, 150 };
display.FillXOR(region);

}/ Remove the XOR region.
display.Fil1XOR(region);

Chapter 6 - Ul_DOS_BGI_DISPLAY 51

UI_DOS_BGI_DISPLAY::Line

52

Syntax

Remarks

#include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::Line(int screenlD, int left, int top,

int right, int bottom, const UI_PALETTE *palette, int width = 1),

This function draws a graphics line between two points specified by top-
left and bottom-right in the color specified by the background portion
of the palette argument. This function uses the Turbo C++ line()
function with the following modifications:

1—The screen display for all devices (e.g., the mouse and cursor)
are shut off before the specified line is drawn. This prevents devices
from overwriting the screen display.

2—The region is clipped according to the screen identification.
This prevents writing to overlapping window regions.

3—The line color is specified by the background portion of palette.

screenlD,, is a screen object identification used to determine the
parts of the line that can be updated to the screen. Only those
screen locations that match screenID are updated. (See
“Chapter 5—UI_DISPLAY” of this manual for more information
about screen identifications.)

left,, is the beginning left position of the line on the screen (in pixel
coordinates). This argument, combined with fop, forms the
beginning point of the line.

top,, is the beginning top position of the line on the screen (in pixel
coordinates). This argument, combined with left, forms the
beginning point of the line.

right,, is the ending right position of the line on the screen (in pixel

coordinates). This argument, combined with bottom, forms the
ending point of the line.

Zinc Interface Library — Programmer’s Reference

¢ bottom,, is the ending bottom position of the line on the screen (in
pixel coordinates). This argument, along with right, forms the
ending point of the line.

e palette, is a pointer to a palette used when drawing the graphics
line. The palette’s background color is used to draw the line.

e width,, is ignored by the graphics display. In text mode, this value
specifies the line width.

Examp|e #include <graphics.h> // include for graphic colors.
#include <ui_dsp.hpp>

ExampleFunctioni ()
UI_DOS_BGI_DISPLAY display;

}/ Draw a diagonal 1line on the background display.
display.Line(-1, 100, 100, 200, 200, _backgroundPalette);

}
UI_PALETTE palette =

\260’, attrib(BLUE, LIGHTGRAY),
attrib(MONO_NORMAL, MONO BLACK),
SOLID FILL, attrib(RED, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

H
ExampleFunction2()
UI_DOS_BGI_DISPLAY display;

// Draw a line to a pre-defined region of the screen.
// Notice the coordinates are defined to draw a line on the
// whole screen, but only the region with the identification
// -1 will actually be updated.
UI_REGION region;
region.left = region.top = 0;
region.right = display.columns / 4;
region.bottom = display.lines / 4;
display.RegionDefine(-1, region);
display.Line(-1, 0, O, display.columns - 1,
} display.lines - 1, palette);

ExampleFunction3()
UI_DOS_BGI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;

}/ Draw a diagonal line across the screen.
UI_REGION region;

Chapter 6 - Ul_DOS_BGI_DISPLAY 53

region.left = region.top = 0;

region.right = display->columns - 1;

region.bottom = display->lines - 1;

// Make sure the full screen is defined.

display->RegionDefine(ID_SCREEN, region);

display->Fill(ID_SCREEN, 0, 0, display->columns - 1,
display->lines - 1, _backgroundPalette);

UI_DOS_BGI_DISPLAY::Rectangle

54

Syntax

Remarks

#include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::Rectangle(int screenID,
const UI_REGION ®ion, const UI_PALETTE *palette,
int width = 1);

This function draws a rectangle on the screen. The background color
of the color palette is the color used when drawing the rectangle. This
function uses the Turbo C++ rectangle() function with the following
additions:

1—The screen display for all devices (e.g., the mouse and cursor)
are shut off before the specified rectangle is drawn. This prevents
devices from overwriting the screen display.

2—The rectangle is clipped according to the screen identification.
This prevents writing to overlapping window regions.

3—The rectangle color is specified by the background portion of
palette.

e screenlD,, is a screen object identification used to determine the
parts of the line that can be updated to the screen. Only those
screen locations that match screenID are updated.

e region, is a reference pointer to the desired rectangle region.
Region.left and region.top are pixel coordinate values that specify the
left-top corner position of the rectangle. Region.right and
region.bottom are pixel coordinate values that specify the right-
bottom corner position of the rectangle.

Zinc Interface Library — Programmer’s Reference

e palette, is a pointer to the palette used when drawing the rectangle.
The palette’s background color is used to draw the rectangle.

e width,, is ignored by the graphics display. In text mode, this value
specifies the rectangle width.

Exarnple #include <graphics.h> // include file for the graphics colors.
#include <ui_dsp.hpp>

ExampleFunction1()
UI_DOS_BGI_DISPLAY display;

// Draw a rectangle to the screen’s background.

UI_REGION region = { 100, 100, 200, 200 };
display.RegionDefine (ID SCREEN region),

display Rectangle (ID_SCREEN, region, _backgroundPalette) ;

}
UI_PALETTE palette =
{

"\260’, attrib(BLUE, LIGHTGRAY),
attrib(MONO_NORMAL, MONO BLACK) .

SOLID_FILL, attrib(RED, WHITE),

attrib (BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

};
ExampleFunction2()
UI_DOS_BGI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;

// Draw a rectangle. Notice the region is defined to be the

// whole screen, but only the region with the identification -1
// will actually be updated.

UI_REGION region;

region.left = region.top = 0;

region.right = display- >columns / 4;

region.bottom = display->lines / 4;

display->RegionDefine(-1, region);

region.right = display->columns - 1;

region.bottom = display->lines - 1;
display->Rectangle(-1, region, palette);

Chapter 6 — UI_DOS_BGI_DISPLAY 55

ExampleFunction3()

UI_DOS_BGI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;

// Draw a rectangle around the whole screen with the

// background palette.

UI_REGION region;

region.left = region.top = 0;

region.right = display->columns - 1;

region.bottom = display->lines - 1;

// Make sure the full screen is defined.
display->RegionDefine(ID_SCREEN, region);
display->Rectangle(ID_SCREEN, region, _backgroundPalette);

Ul_DOS_BGI_DISPLAY::RectangleXOR

56

Syntax

Remarks

#include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::RectangleXOR(
const UI_REGION ®ion);

This function draws an XOR rectangle on the screen. This function
differs from the UI_DOS_BGI_DISPLAY::Rectangle function in the

following respects:

1—No screen identification is required. The UI_DOS_BGI_-

DISPLAY::RectangleXOR function automatically XORs

rectangle, independent of the screen identification for the rectangle.

2—No palette is required. The XOR rectangle is the opposite color
of the current screen color on the specified pixel locations. To
remove an XOR rectangle, simply XOR the same rectangle again.

This function differs from the UI_DOS_BGI_DISPLAY:FillXOR
function (described above), because it does not fill the region, but
rather, draws a box at the edge of the region.

region;, is a reference pointer to the desired XOR rectangle.
Region.left and region.top are pixel coordinate values that specify the
left-top corner position of the XOR rectangle. Region.right and

Zinc Interface Library — Programmer’s Reference

region.bottom are pixel coordinate values that specify the right-
bottom corner position of the XOR rectangle.

Example #include <ui_dsp.hpp>
ExampleFunctioni ()
UI_DOS_BGI_DISPLAY display;

}/ Draw an XOR rectangle on the screen.
UI_REGION region = { 100, 100, 150, 150 };
display.RectangleXOR(region);

}/ Remove the XOR rectangle.
display.RectangleXOR(region);

UI_DOS_BGI_DISPLAY::RegionConvert

Syntax #include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::RegionConvert(
UI_REGION ®ion);

Remarks This function converts a cell (or text) region to a graphics (or pixel)
region. The purpose of this function is to allow portability of higher-
level display code. This function does not check for regions that have
already been converted from text to graphics coordinates.

e region, is a reference pointer to the region whose cell coordinates
are to be converted.

#include <graphics.h> // include for the palette colors.
Example #include <ui_dsp.hpp>

UI_PALETTE palette =
'\260’, attrib(BLUE, LIGHTGRAY),
attrib (MONO_NORMAL, MONO BLACK),

SOLID_FILL, attrib(RED, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

Chapter 6 - Ul_DOS_BGI_DISPLAY 57

ExampleFunctioni ()
UI_DOS_BGI_DISPLAY display;

// Convert cell coordinates to draw a box.

// (Display independent)

UI_REGION region = { 0, 0, 10, 10 }; // Cell coordinates.
display.RegionConvert(region);

display.F1il1(ID_SCREEN, region, palette);
}

ExampleFunction2()

UI_DOS_BGI_DISPLAY *display =
new UI_DOS_BGI_DISPLAY;

// Convert cell coordinates to draw a box.

// (Display independent)

UI_REGION *region = { 0, 0, 10, 10 }; // Cell coordinates.
display->RegionConvert(region);

display->RegionDefine(-1, region);

display->Rectangle(-1, *region, palette);

Ul_DOS_BGI_DISPLAY:: Text

Syntax #include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::Text(int screenID, int left, int top,
const char *text, const UI_PALETTE *palette, int length = -1,
int fillBackground = TRUE);

Remarks This function draws a text string to the screen. This function uses the
Turbo C+ + outtextxy() function with the following additions:

1—The screen display for all devices (e.g., the mouse and cursor)

are shut off before the specified string is drawn. This prevents

devices from overwriting the screen display.

2—The string is clipped according to the screen identification. This
prevents writing to overlapping window regions.

3—The string color is specified by the background portion of
palette.

58 Zinc Interface Library - Programmer’s Reference

screenlD, is a screen object identification used to determine the
parts of the text string that can be updated to the screen. Only
those screen locations that match screenID are updated. (See
“Chapter 5—UI_DISPLAY” of this manual for more information
about screen identifications).

left,, is the beginning left position of the text on the screen (in pixel
coordinates). This argument, combined with top, forms the
beginning point where the text is to be displayed.

top,, is the beginning top position of the text on the screen (in pixel
coordinates). This argument, combined with left, forms the
beginning point where the text is to be displayed.

text,, is a pointer to the text to be displayed to the screen.

Ppalette,, is a pointer to the palette used when drawing the text. The
palette’s foreground color is used to draw the characters of the text.
If fillBackground is set to TRUE, the palette’s background color is
used to fill the cell region behind the character.

length,, is the number of characters to display on the screen. If this
argument value is -1, the string is displayed until the "\0’ character
is found.

fillBackground,, is a flag indicating whether to fill the background
(i.e., the cell region underneath the text characters) with the defined
palette’s background color. If fillBackground is set to TRUE, the
text’s background will be filled with the palette’s background color.
Otherwise, only the foreground color is used to draw the text
characters.

Chapter 6 — UI_DOS_BGI_DISPLAY 59

Example #include <graphics.h> // include file for the graphics colors.
#include <ui_dsp.hpp>

ExampleFunctioni ()
UI_DOS_BGI_DISPLAY display;

// Display text to the top-left corner of the screen.

UI_REGION region = { 100, 100, 200, 200 };

display.RegionDefine(ID_SCREEN, region);

display.Text(ID SCREEN, 0, O, "This is sample text",
_backgroundPalette);

}
?I_PALETTE palette =

'\260’, attrib(BLUE, LIGHTGRAY),
attrib (MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLUE, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

}
ExampleFunction2()
UI_DOS_BGI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;

// Display the text. Notice the text fills a large portion
/] of the whole screen, but only the region with the
// identification -1 will actually be updated.
UI_REGION region;
region.left = region.top = 0;
region.right = display->columns / 4;
region.bottom = display->lines / 4;
display->RegionDefine(-1, region);
display->Text(-1, 0, O,
*This is sample text that doesn’t all fit in the region",
palette);

UI_DOS_BGI_DISPLAY:: TextHeight

Syntax #include <ui_dsp.hpp>

int UI_DOS_BGI_DISPLAY::TextHeight(const char *string);

Remarks This function returns the height of a specified string in screen pixels.
This function is equivalent to the Turbo C++ textheight() function.

60 Zinc Interface Library — Programmer’s Reference

Example

e returnValue, is the height of the string in screen pixels.

out

e string,, is a pointer to the string whose height is to be determined.

#1include <ui_dsp.hpp>
ExampleFunctiont ()

UI_DOS_BGI_DISPLAY display;

// Get the display independent size of text.
int height = display.TextHeight("This is sample text");

Ul_DOS_BGI_DISPLAY:: TextWidth

Syntax

Remarks

Example

#include <ui_dsp.hpp>

int UL_DOS_BGI_DISPLAY::TextWidth(const char *string);

This function returns the width of a specified string in pixel size. This
function is equivalent to the Turbo C++ textwidth() function.

e returnValue, is the width of the string in screen pixels.

e string,, is a pointer to the string whose width is to be determined.

#include <ui_dsp.hpp>
ExampleFunction1()
UI_DOS_BGI_DISPLAY display;

// Get the display independent size of text.
int width = display.TextWidth(*This is sample text");

Chapter 6 — UI_DOS_BGI_DISPLAY 61

T —

62 Zinc Interface Library — Programmer’s Reference

CHAPTER 7 - Ul_DOS_TEXT_DISPLAY

Overview The UI_DOS_TEXT DISPLAY class implements a text display that
writes to screen memory. The public members of the Ul_DISPLAY and
UI_DOS_TEXT_DISPLAY classes (declared in UI_DSP.HPP) are:

class UI_DISPLAY

{
public:
static UCHAR usingActiveDisplay;
static UCHAR usingAlternateDisplay;
UCHAR installed;
UCHAR isMono;
UCHAR isActiveDisplay;
const UCHAR isText;
const UCHAR cellHeight;
const UCHAR cellWidth;
int columns;
int lines;

void RegionDefine(int screenID, UI_REGION ®ion);
}s

class UI_DOS_TEXT_DISPLAY : public UI_DISPLAY

public:
UI_DOS_TEXT_DISPLAY(LINE_MODE lineMode = LINES_AUTO);
virtual ~“UI_DOS_TEXT_DISPLAY(void);

void Bitmap(int screenlID, const UI_REGION ®ion,
const USHORT *bitmap, const UI_PALETTE *palette,
int fillBackground = TRUE);

‘'void Fill(int screenID, const UI_REGION ®ion,
const UI_PALETTE *palette);

void FillXOR(const UI_ REGION ®ion);

void Line(int screenID, int left, int top, int right,
int bottom, const UI_PALETTE *palette, int width = 1);

void Rectangle(int screenID, const UI_REGION ®ion,
const UI_PALETTE *palette, int width = 1);

void RectangleXOR(const UI_REGION ®ion);

void RectangleXORDiff (const UI_REGION &oldRegion,
const UI_REGION &newRegion);

void RegionConvert(UI_REGION ®ion);

void Text(int screenID, int left, int top,
const char *text, const UI_PALETTE *palette,
int length = -1, int fillBackground = TRUE);

int TextHeight(const char *string);

int TextWidth(const char *string);

b
» cellHeight is always 1 for a UI_DOS_TEXT_DISPLAY class object.
e cellWidth is always 1 for a UI_DOS_TEXT_DISPLAY class object.
e columns gives the total character width of the screen display. For

example, if the constructed display were 25 lines x 80 columns, the
value of columns would be 80.

Chapter 7 — Ul_DOS_TEXT_DISPLAY 63

o installed is TRUE if the display installed correctly. Otherwise, this
value is FALSE.

» isActiveDisplay is TRUE if the specified display class object is the
active display. If it is the alternate display, this value is FALSE.

* isMono is TRUE if the monitor is in monochrome (i.e., black and
white) mode. Otherwise, this value is FALSE (i.e., the monitor is
in color mode). This variable is only used when the application is
running in text mode.

 isText is always TRUE for UI_DOS_TEXT_DISPLAY class objects.

e lines gives the total character height of the screen display. For
example, if the constructed display were 25 lines x 80 columns, the
value of lines would be 25.

» usingActiveDisplay is TRUE if the Zinc Interface library has
constructed an active display. The first display created in an
application is the active (i.e., primary) display.

usingAlternateDisplay is TRUE if the Zinc Interface library has

constructed an alternate display. The second display created in an
application is the alternate (i.e., secondary) display.

See also The example file XTXTDISP.CPP, which gives a complete example of
the UI_DOS_TEXT_DISPLAY class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the operation of the screen display.

“Chapter 5—UI_DISPLAY” of this manual which describes the base
class from which the UI_DOS_TEXT _DISPLAY class is derived.

“Chapter 6—UI_DOS_BGI_DISPLAY” of this manual which describes
a graphics display derived from the UI_DISPLAY class.

64 Zinc Interface Library - Programmer’s Reference

UI_DOS_TEXT DISPLAY::Ul_DOS_TEXT DISPLAY

Syntax #include <ui_dsp.hpp>

UI_DOS_TEXT_DISPLAY::UI_DOS_TEXT DISPLAY(
TEXT_DISPLAY_MODE displayMode = TDM_AUTO);

Remarks This constructor returns a pointer to a new Ul_DOS_TEXT_DISPLAY
object. When a new UI_DOS_TEXT_DISPLAY class is constructed,
the system clears the screen to the background color and pattern
specified by the global palette variable _backgroundPalette (See “Chapter
20—UI_PALETTE” of this manual).

If a primary display class has already been constructed, this function
constructs a secondary text display using an alternate display (if any).
This provides the low-level implementation of dual monitor support.

e displayMode,, specifies the type of text display to create. The
available display modes (defined in UI_DSP.HPP) are:

TDM_AUTO—Constructs a text display using the current text
mode.

TDM_25x40—Splits the screen display into 25 line by 40
column character cells.

TDM_25x80—Splits the screen display into 25 line by 80
column character cells.

TDM_43x80—Splits the screen display into 43 line x 80 column
character cells on an EGA display or 50 line x 80 column on a
VGA display.

Example #include <ui_dsp.hpp>
ExampleFunction1()

// Call the TEXT display constructor.
UI_DOS_TEXT_DISPLAY display;

Chapter 7 - Ul_DOS_TEXT_DISPLAY 65

ExampleFunction2(int graphics)

// Put a level of abstraction into the call.
UI_DISPLAY *display;
display = (graphics) ?
(UI_DISPLAY *)new UI_DOS_BGI DISPLAY :
(UI_DISPLAY *)new UI_DOS_TEXT_DISPLAY(TDM_43x80);

}
ExampleFunction3()
// Create two displays (dual screen monitor support).
UI_DOS_BGI DISPLAY display1l;
UI_DOS_TEXT DISPLAY *display2 = new UI_DOS_TEXT DISPLAY;
}

UI_DOS_TEXT_DISPLAY:: ~ Ul_DOS_TEXT DISPLAY

Syntax

Remarks

Example

66

#include <ui_dsp.hpp>

virtual UI_DOS_TEXT_DISPLAY:: ~ UI_DOS_TEXT_DISPLAY(
void);

This virtual destructor destroys the class information associated with the
UI_DOS_TEXT_DISPLAY object and clears the screen display.

#include <ui_dsp.hpp>
ExampleFunctionit ()
UI_DOS_TEXT_DISPLAY display;

}/ The display destructor is called automatically when
// the scope of this function ends.

ExampleFunction2(int graphics)
UI_DISPLAY *display;
display = (graphics) ?

(UI_DISPLAY *)new UI_DOS_BGI DISPLAY :
(UI_DISPLAY *)new UI_DOS_TEXT DISPLAY (TDM_AUTO);

}/ Call the display destructor.
delete display;

Zinc Interface Library - Programmer’s Reference

ExampleFunction3()
{

UI_DOS_BGI DISPLAY displayf;
UI_DOS_TEXT _DISPLAY *display2 = new UI_DOS_TEXT DISPLAY;

// Delete display2 since it is a UI_DOS_BGI_DISPLAY

// class pointer.

delete display2;

// Displayl is destroyed when the scope of the display ends.

UI_DOS_TEXT_DISPLAY::Bitmap

Syntax #include <ui_dsp.hpp>
void UI_DOS_TEXT_DISPLAY::Bitmap(int screenID,

const UI_REGION ®ion, const USHORT *bitmap,
const UI_PALETTE *palette, int fillBackground);

Remarks This function is a stub. (See “Chapter 6—UI_DOS_BGI_DISPLAY”
of this manual for the graphics equivalent of this function.

Ul_DOS_TEXT _DISPLAY::Fill

Syntax #include <ui_dsp.hpp>
void UI_DOS_TEXT_DISPLAY::Fill(int screenID,
const UI_REGION ®ion, const UI_PALETTE *palette);
Remarks This function fills a rectangular, two-dimensional region on the screen
with the background color and pattern specified by palette.
1—The screen display for all devices (e.g., the mouse and cursor)
are shut off before the specified region is filled. This prevents

devices from overwriting the screen display.

2—The region is clipped according to the screen identification.
This prevents writing to overlapping window regions.

3—The fill color is specified by the background portion of palette.

Chapter 7 — Ul_DOS_TEXT_DISPLAY 67

68

Example

screenID, is a screen object identification used to determine the
parts of the fill region that can be updated to the screen. Only
those screen locations that match screenID are updated. (See
“Chapter 5—UI_DISPLAY” of this manual for more information
about screen identifications.)

region,, is a reference pointer to the desired fill region. Region.left
and region.top are pixel coordinate values that specify the left-top
corner position of the fill region. Region.right and region.bottom
values specify the right-bottom corner position of the fill region.

palette,, is a pointer to the palette used when filling the screen
region. The palette’s background color is used for the fill.

#include <graphics.h> // include for graphic colors.
#include <ui_dsp.hpp>

ExampleFunction1 ()

}

UI_DOS_TEXT_DISPLAY display;

U1 _REGION region = { 10, 10, 40, 20 };

//”Make sure ID_SCREEN gets the whole screen.
display->RegionDefine(ID_SCREEN, region);

display >F1i11(ID_SCREEN, region, backgroundPalette);

UI_PALETTE palette =
{

}

*\260’, attrib(BLUE, LIGHTGRAY),
attrib(MONO _NORMAL , MONO_BLACK) ,
SOLID_FILL, attrib(BLUE, WHITE),
attrib(BW_ BLACK BW WHITE), attrib(GS BLACK, GS_WHITE)

ExampleFunction2()

UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT DISPLAY;

// Fill the specified region. Notice the region is defined to
// be the whole screen, but only the region with the
// identification -1 will actually be updated.
UI_REGION region,

region.left = region.top =

region.right = display- >columns /! 4;

region.bottom = display->lines / 4;

display- >RegionDef1ne(1, region);

reglon.right = display->columns - 1;

region.bottom = display->lines - 1;

display->Fill(-1, region, palette),

Zinc Interface Library - Programmer’s Reference

?xampleFunctions()
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;

// Fill the whole screen with the background palette.
UI_REGION region;

region.left = region.top = 0;

region.right = display- ->columns - 13

region.bottom = display->lines - 1;

// Make sure the full screen is defined
display->RegionDefine(ID_SCREEN, region);
display->Fill(ID_SCREEN, region, backgroundPalette);

UI_DOS_TEXT_DISPLAY::FillXOR

Syntax #include <ui_dsp.hpp>

void UI_DOS_TEXT_DISPLAY::FillXOR(
const UI_REGION ®ion);

Remarks This function XOR fills a rectangular, two dimensional region of the
screen. This function differs from the UI_DOS_TEXT_DISPLAY::Fill
function in the following respects:

1—No screen identification is required. The UI_DOS_TEXT -
DISPLAY::FillXOR function automatically XOR fills the region,
independent of the screen identification for the region.

2—No palette is required. The XOR region is the opposite color
of the current screen color on the specified pixel locations. To
remove an XOR region, simply XOR the same region again.

This function differs from the UI_DOS_TEXT_DISPLAY::RectangleXOR
function (described below), because it XORs the whole region, not just
the edge of the region.

e region, is a reference pointer to the desired XOR region.
Region.left and region.top are pixel coordinate values that specify the
left-top corner position of the XOR region. Region.right and
region.bottom are pixel coordinate values that specify the right-
bottom corner position of the XOR region.

Chapter 7 — Ul_DOS_TEXT_DISPLAY 69

Example

#include <ui_dsp.hpp>
ExampleFunctioni ()
UI_DOS_TEXT_DISPLAY display;

}/ Fill an XOR region on the screen.
UI_REGION region = { 100, 100, 150, 150 };
display.Fil1XOR(region);

)/ Remove the XOR region.
display.Fil1XOR(region);

UI_DOS_TEXT DISPLAY::Line

70

Syntax

Remarks

#include <ui_dsp.hpp>

void UI_DOS_TEXT_DISPLAY::Line(int screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1),

This function draws a graphics line between two points specified by top-
left and bottom-right in the color specified by the background portion
of palette.

1—The screen display for all devices (e.g., the mouse and cursor)
are shut off before the specified line is drawn. This prevents devices
from overwriting the screen display.

2—The region is clipped according to the screen identification.
This prevents writing to overlapping window regions.

3—The line color is specified by the background portion of palette.

e screenlD,, is a screen object identification used to determine the
parts of the line that can be updated to the screen. Only those
screen locations that match screenID are updated. (See “Chapter
5—UI_DISPLAY” of this manual for more information about
screen identifications.)

Zinc Interface Library — Programmer’s Reference

e left;, is the beginning left position of the line on the screen (in
character coordinates). This argument, combined with top, forms
the beginning point of the line.

e top, is the beginning top position of the line on the screen (in
character coordinates). This argument, combined with left, forms
the beginning point of the line.

e right, is the ending right position of the line on the screen (in
character coordinates). This argument, combined with bottom,
forms the ending point of the line.

e bottom, is the ending bottom position of the line on the screen (in
character coordinates). This argument, along with right, forms the
ending point of the line.

e palette, is a pointer to the palette used when drawing the graphics
line. The palette’s foreground color is used to draw the line.

e width,, specifies the line width. If width is 1, a single line is drawn
(i.e., the line is drawn with the following text characters: “~ |”). If
width is 2, a double width line is drawn (i.e., the line is drawn with
the following text characters: “= |”).

Example #include <graphics.h> // include for graphic colors.
#include <ui_dsp.hpp>

ExampleFunctioni()
{
UI_DOS_TEXT_DISPLAY display;

.

}/ Draw a diagonal line on the background display.
display.Line(-1, 10, 10, 20, 20, _backgroundPalette);

Chapter 7 — UI_DOS_TEXT_DISPLAY 71

?I_PALETTE palette =

'\260’, attrib(BLUE, LIGHTGRAY),
attribéMONO_NORMAL, MONO_BLACK) ,

SOLID FILL, attrib(BLUE, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)
}s
ExampleFunction2()
UI_DOS_TEXT_DISPLAY display;
// Draw a line to a pre-defined region of the screen.
// Notice the coordinates are defined to draw a line on the
// whole screen, but only the region with the identification
// -1 will actually be updated.
UI_REGION region;
region.left = region.top = 0;
region.right = display->columns / 4;
region.bottom = display->lines / 4;
display.RegionDefine(-1, region);
display.Liné(-1, 0, 0, display->columns - 1,
display->lines - 1, palette);
}
ExampleFunction3()
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
}/ Draw a diagonal line across the screen.
UI_REGION region;
region.left = region.top = 0;
region.right = display->columns - 1;
region.bottom = display->lines - 1;
// Make sure the full screen is defined.
display->RegionDefine(ID_SCREEN, region);
display->Fill(ID_SCREEN, 0, 0, display->columns - 1,
display->lines - 1, _backgroundPalette);
}

UI_DOS_TEXT_DISPLAY::Rectangle

Syntax #include <ui_dsp.hpp>
void UI_DOS_TEXT_DISPLAY::Rectangle(int screenID,

const UI_REGION ®ion, const UI_PALETTE *palette,
int width = 1);

72 Zinc Interface Library — Programmer’s Reference

Remarks This function draws a rectangle on the screen. The background color
of the color palette is the color used when drawing the rectangle.

1—The screen display for all devices (e.g., the mouse and cursor)
are shut off before the specified rectangle is drawn. This prevents
devices from overwriting the screen display.

2—The rectangle is clipped according to the screen identification.
This prevents writing to overlapping window regions.

3—The rectangle color is specified by the background portion of
palette.

e screenlD,, is a screen object identification used to determine the
parts of the line that can be updated to the screen. Only those
screen locations that match screenID are updated. (See \
“Chapter 5S—UI_DISPLAY”of this manual for more information
about screen identifications.)

e region;, is a reference pointer to the desired rectangle region.
Region.left and region.top are pixel coordinate values that specify the }?
left-top corner position of the rectangle. Region.right and
region.bottom are pixel coordinate values that specify the right-
bottom corner position of the rectangle.

e palette, is a pointer to the palette used when drawing the rectangle. J
The palette background color is used to draw the rectangle.

e width;, specifies the rectangle width. If widrh is 1, a single width I
rectangle is drawn (i.e., the rectangle is drawn with the following
text characters: “r,J L—|”). If width is 2, a double width |
rectangle is drawn (i.e., the rectangle is drawn with the following ‘
text characters: “gq 4 L= |”). !

|

Example #include <graphics.h> // include file for the graphics colors.
#include <ui_dsp.hpp>

ExampleFunction1() ‘
{
UI_DOS_TEXT_DISPLAY display; }

}/ Draw a rectangle to the screen’s background.
UI_REGION region = { 10, 10, 20, 20 };
// Make sure ID_SCREEN gets the whole screen.

Chapter 7 — Ul_DOS_TEXT_DISPLAY 73

display.RegionDefine(ID_SCREEN, region);
display.Rectangle(ID_SCREEN, region, _backgroundPalette) ;

}
%I_PALETTE palette =

*\260’, attrib(BLUE, LIGHTGRAY),
attrib(MONO_NORMAL, MONO_BLACK) .

SOLID FILL, attrib(BLUE, WHITE),

attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

};
ExampleFunction2()
UI_DOS_TEXT_DISPLAY display;
}I Draw a rectangle. Notice the region is defined to be
/] the whole screen, but only the region with the
// identification -1 will actually be updated.
UI_REGION region;
region.left = region.top = 0;
region.right = display->columns / 4;
region.bottom = display->lines / 4;
display.RegionDefine(-1, region);
region.right = display->columns - 1;
region.bottom = display->lines - 1;
} display.Rectangle(-1, region, palette);
ExampleFunction3()
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
// Draw a rectangle around the whole screen with the
/1 background palette.
UI_REGION region;
region.left = region.top = 0;
region.right = display->columns - 1;
region.bottom = display->lines - 1;
// Make sure the full screen is defined.
display->RegionDefine(ID SCREEN, region);
display->Rectangle(ID_SCREEN, region, _backgroundPalette);
}

Zinc Interface Library — Programmer’s Reference

Ul_DOS_TEXT_DISPLAY::RectangleXOR

Syntax #include <ui_dsp.hpp>

void UI_DOS_BGI_DISPLAY::RectangleXOR(
const UI_REGION ®ion);

Remarks This function draws an XOR rectangle on the screen. This function
differs from the UI_DOS_TEXT_DISPLAY::Rectangle function in the
following respects:

1—No screen identification is required. The UI_DOS_TEXT_-
DISPLAY::RectangleXOR function automatically XOR fills the
rectangle, independent of the screen identification for the rectangle.

2—No palette is required. The XOR rectangle is the opposite color
of the current screen color on the specified pixel locations. To
remove an XOR rectangle, simply XOR the same rectangle again.

This function differs from the UI_DOS_TEXT_DISPLAY:FillXOR
function (described above), because it does not fill the region, but
rather, draws a box at the edge of the region.

e region, is a reference to the desired XOR rectangle. Region.left and
region.top are pixel coordinate values that specify the left-top corner
position of the XOR rectangle. Region.right and region.bottom are
pixel coordinate values that specify the right-bottom corner position
of the XOR rectangle.

Chapter 7 - UI_DOS_TEXT_DISPLAY 75

Example #include <ui_dsp.hpp>
ExampleFunctioni ()
UI_DOS_TEXT_DISPLAY display;
}I Draw an XOR rectangle on the screen.

UI_REGION region = { 10, 10, 15, 15 };
display.RectangleXOR(region) ;

/1 Remove the XOR rectangle.
display.RectangleXOR(region);

Ul_DOS_TEXT_DISPLAY::RegionConvert

Syntax #include <ui_dsp.hpp>

void UI_DOS_TEXT_DISPLAY::RegionConvert(
UI_REGION ®ion);

Remarks This function converts a graphics (or pixel) region to a cell (or text)
region. The purpose of this function is to allow portability of higher-
level display code.

NOTE: This function does not check for regions that have already been
converted from graphics to text coordinates.

* region, is a reference to the cell region to be converted.

Exarnple #include <graphics.h> // include for the palette colors.
#include <ui_dsp.hpp>

UI_PALETTE palette =
'\260’, attrib(BLUE, LIGHTGRAY),
attrib (MONO_NORMAL, MONO_BLACK),

} SOLID_FILL, RED, WHITE
H

76 Zinc Interface Library — Programmer’s Reference

ExampleFunctioni ()
UI_DOS_TEXT_DISPLAY display;

// Convert cell coordinates to draw a box.

// (Display independent)

UI_REGION region = { 0, O, 10, 10 }; // Cell coordinates.
display.RegionConvert(region);

} display.Fill(ID_SCREEN, region, palette);

ExampleFunction2()
UI_DOS_TEXT_DISPLAY display;

// Convert cell coordinates to draw a box.

// (Display independent)

UI_REGION *region = { 0, 0, 10, 10 }; // Cell coordinates.
display.RegionConvert(region);

display.RegionDefine(-1, region);

display.Rectangle(-1, *region, palette);

Ul_DOS_TEXT_DISPLAY::Text

Syntax #include <ui_dsp.hpp>

void UI_DOS_TEXT _DISPLAY::Text(int screenlD, int left, int top,
const char *zext, const Ul_PALETTE *palette, int length = -1,
int fillBackground = TRUE);

Remarks This function draws a text string to the screen.

e screenID,, is a screen object identification used to determine the
parts of the text string that can be updated to the screen. Only
those screen locations that match screenID are updated. (See
“Chapter 5—UI_DISPLAY” of this manual for more information
about screen identifications.)

o left, is the beginning left position of the text on the screen (in

character coordinates). This argument, combined with top, forms
the beginning point where the text is to be displayed.

Chapter 7 — Ul_DOS_TEXT_DISPLAY 77

78

Example

s top, is the beginning top position of the text on the screen (in
character coordinates). This argument, combined with left, forms
the beginning point where the text is to be displayed.

 text, is a pointer to the text to be displayed to the screen.

* palette, is a pointer to the palette used when drawing the text.

 length,, is the number of characters to display on the screen. If this
argument value is set to -1, then the string is displayed until a

NULL character ’\(’ is found.

» fillBackground,, is ignored.

#include <graphics.h> // include file for the graphics colors.
#include <ui_dsp.hpp>

ExampleFunctioni ()
UI_DOS_TEXT_DISPLAY display;

// Display text to the top-left corner of the screen.

UI_REGION region = { 100, 100, 200, 200 };

/| Make sure ID_SCREEN gets the whole screen.

display.RegionDefine(ID_SCREEN, region);

display.Text(ID SCREEN, 0, O, *This is sample text",
_backgroundPalette);

}
UI_PALETTE palette =

'\260’, attrib(BLUE, LIGHTGRAY),
attrib (MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLUE, WHITE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE)

H
ExampleFunction2()
UI_DOS_TEXT_DISPLAY display;

// Display the text. Notice the text fills a large portion
// of the whole screen, but only the region with the
// identification -1 will actually be updated.
UI_REGION region;
region.left = region.top = 0;
region.right = display->columns / 4;
region.bottom = display->lines / 4;
display.RegionDefine(-1, region);
display.Text(-1, 0, O,
"This is sample text that doesn’t all fit in the region",

Zinc Interface Library - Programmer’s Reference

palette);

Ul_DOS_TEXT DISPLAY::TextHeight

Syntax #include <ui_dsp.hpp>

int UL_DOS_TEXT_DISPLAY::TextHeight(const char *string);

Remarks This function returns the height of a specified string in character size.
e retunValue,, is always 1.
e string, is ignored.

Example #include <ui_dsp.hpp>
ExampleFunction1()

UI_DOS_TEXT_DISPLAY display;

// Get the displax independent size of text.
int height = display.TextHeight("This is sample text");

UI_DOS_TEXT_DISPLAY::TextWidth

Syntax #include <ui_dsp.hpp>

int UI_DOS_TEXT_DISPLAY::TextWidth(const char *string);

Remarks This function returns the width of a specified string in characters.
e returnValue, is the width of the string in characters.

e string,, is a pointer to the string whose width is to be determined.

Chapter 7 — Ul_DOS_TEXT_DISPLAY 79

80

Example #include <ui_dsp.hpp>
ExampleFunctioni ()
UI_DOS_TEXT_DISPLAY display;

// Get the display independent size of text.
1nt height = display.TextHeight("This is sample text");

Zinc Interface Library - Programmer’s Reference

CHAPTER 8 - Ul_EDIT_INFO

Overview The UI_EDIT _INFO class serves as one of the base classes to all

See also

window object classes that can be edited. (The other base class is
UI_WINDOW_OBIJECT). The public members of the UI_EDIT_INFO
class (declared in UI_WIN.HPP) are:

class UI_EDIT_INFO

public:
static void UndoStrategy(short maxObjects, long maxBytes,
short maxUndos, long maxBytesPerObject,
short maxUndosPerObject) ;

b

The graphic image below shows the conceptual operation of the undo
system within the Zinc Interface Library:

thﬂ)OﬂHED()"WPLEIAENTATK)N I

Whenever an end-user enters, deletes, or modifies information in a field,
the undo system keeps track of the changes from the original
information. Information concerning the strategy used to save
information changes can be set by calling the UI_EDIT_INFO::-
UndoStrategy function (discussed below).

The example file XEDIT.CPP, which gives a complete example of the
UI_EDIT_INFO class.

Chapter 8 — UI_EDIT_INFO 81

“Chapter 29—UIW_FORMATTED_STRING” of this manual, which
describes a window object derived from the UI_EDIT_INFO class.

“Chapter 3¢—UIW_NUMBER” of this manual, which describes a
window object derived from the UI_EDIT _INFO class.

“Chapter 41—UIW_STRING” of this manual, which describes a window
object derived from the UI_EDIT_INFO class.

UL_EDIT_INFO::UndoStrategy

82

Syntax

Remarks

#include <ui_gen.hpp>

static void UI_EDIT_INFO::UndoStrategy(int maxObjects,

long maxBytes, int maxUndos, long maxBytesPerObject,
short maxUndosPerObject);

This static function is used to reset the undo strategy associated with
objects that can be edited. It should be called in the early stages of an
application if the undo strategy is to be changed. One or more of the
parameters specified below can be used to change the undo strategy. If
a parameter is specified as -1, that portion of the undo strategy is
unchanged.

maxObjects;, specifies the maximum number of objects that can have
undo information. For example, if this value were set to 10, the
undo system would only keep undo information on the last 10
objects that were edited. If this value is -1 the undo strategy for
maxObjects is unchanged.

maxBytes,, specifies the maximum amount of space (in bytes) to be
used by the undo system. For example, if the programmer specified
the maximum byte space to be 10k, the undo system would only
keep 10k worth of undo information. If this value is -1 the undo
strategy for maxBytes is unchanged.

maxUndos,, specifies the maximum number of undo operations that

are saved by the undo system. If this value is -1 the undo strategy
for maxUndos is unchanged.

Zinc Interface Library - Programmer’s Reference

» maxBytesPerObject,, specifies the maximum number of bytes a
particular edit object may take for its undo operations. If this value
is -1 the undo strategy for maxBytesPerObject is unchanged.

e maxUndosPerObject,, specifies the maximum number of undo
operations that can be saved per edit object. If this value is -1 the
undo strategy for maxUndosPerObject is unchanged.

Example #include <ui_win.hpp>
ElementFunctioni()
{

// Initialize the system.
UI_DOS _TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT MANAGER (100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

// Change the undo strategy to only keep track of 10
// objects or 10k worth of undo information, whichever
// is less.

UI_EDIT_INFO: :UndoStrategy (10, 10240, -1, -1, -1);

Chapter 8 - Ul_EDIT_INFO 83

84 Zinc Interface Library — Programmer’s Reference

CHAPTER 9 - Ul_ELEMENT

Overview The UI_ELEMENT class serves as the base class to all window object
classes, all device classes and several other specialized classes in the
Zinc Interface Library. The public members of the UI_ELEMENT class
(declared in UI_GEN.HPP) are:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

UI_ELEMENT (void) ;
virtual “UI_ELEMENT (void);

e previous and next are pointers to additional elements (or derived
class elements) stored in doubly-linked lists.

See also The example file XELEMENT.CPP, which gives a complete example of
the UI_ELEMENT class.

“Chapter 4—UI_DEVICE” of this manual, which describes an abstract
class derived from the UI_ELEMENT class. The UI_DEVICE class is
used as the base class for input devices such as the keyboard
(UI_BIOS_KEYBOARD) and mouse (Ul_MS_MOUSE) classes.

“Chapter 17—UI_LIST” of this manual, which describes the operation
of list elements in a list class.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
a class derived from the UI_ELEMENT class. The Ul_WINDOW_-
OBJECT class is used as the base class for all the window objects
described in the Programmer’s Reference (e.g, UIW_BORDER,
UIW_BUTTON, UIW_STRING, UIW_TEXT).

Chapter 9 — Ul_ELEMENT 85

UI_ELEMENT::UI_ELEMENT

Syntax

Remarks

Example

#include <ui_gen.hpp>

UI_ELEMENT::UI_ELEMENT (void);

This constructor returns a pointer to a new UI_ELEMENT object.

#include <ui_gen.hpp>
ElementFunction1()

// Each declaration below calls the UI_ELEMENT constructor.
UI_ELEMENT element1;

UI_ELEMENT *element2;

element2 = new UI_ELEMENT;

UI_ELEMENT *element3 = new UI_ELEMENT;

UI_ELEMENT:: ~ Ul_ELEMENT

86

Syntax

Remarks

Example

#include <ui_gen.hpp>

virtual UI_ELEMENT:: = UI_ELEMENT (void);

This destructor destroys the class information associated with the
UI_ELEMENT object. The destructor is declared virtual so that
derived list element destructors can be called. (If the destructor for the
UI_ELEMENT class were not declared virtual, the programmer would
need to call the destroy function associated with each derived class.)

#include <ui_gen.hpp>

%1ementFunct10n1()
UI_ELEMENT elementt;
UI_ELEMENT *element2;

element2 = new UI_ELEMENT;
UI_ELEMENT *element3 = new UI_ELEMENT;

Zinc Interface Library — Programmer’s Reference

// Call the destructor for elements 2 and 3. The

// element1 destructor is automatically called when the
// scope of this function ends.

delete element3;

delete element2;

Chapter 9 — Ul_ELEMENT

87

88 Zinc Interface Library - Programmer’s Reference

CHAPTER 10 - Ul_ERROR_SYSTEM

Overview The UI_ERROR_SYSTEM class is the base class that the Zinc
Interface Library and programmers use to report run-time errors. It is
the default error class if no other class is specified. The public members
of the Ul_ERROR_SYSTEM class (declared in UI_WIN.HPP) are:

class UI_ERROR_SYSTEM

{

public:
// UI_ERROR_SYSTEM(void); Use the default C++ constructor.
virtual “UI_ERROR_SYSTEM(void);
virtual void Beep(void);

virtual void ReportError (UI_WINDOW_MANAGER *windowManager,
} USHORT objectFlags, char *format, ...);
)

Global UI_ERROR_SYSTEM *_errorSystem is a pointer to the error system.
variables This variable originally points to a static UI_ ERROR_SYSTEM class
object. It may be reset by the programmer to point to a class object
derived from the UI_ERROR_SYSTEM base class. The external
declaration for this variable is contained in UI_WIN.HPP. The actual

declaration of this variable is contained in G_ERROR.CPP.

See also The example file XERR.CPP, which gives a complete example of the
UI_ERROR_SYSTEM class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the error system.

“Chapter 11—UI_ERROR_WINDOW_SYSTEM” of this manual,
which describes a window based error system class.

UI_ERROR_SYSTEM::UI_ERROR_SYSTEM

Syntax #include <ui_win.hpp>

UI_ERROR_SYSTEM::UI_ERROR_SYSTEM(void);

Chapter 10 - Ul_ERROR_SYSTEM 89

Remarks This constructor returns a pointer to a new UL ERROR_SYSTEM class
object.

NOTE: If the constructed error system class object is assigned to the
global variable _errorSystem it is not automatically destroyed by the
system. Therefore, the class object should be destroyed by the
programmer at the end of the application program.

Example #include <ui_win.hpp>
#include "demo.hlh"

ExampleFunctioni ()
{

// Initialize the Zinc Interface Library.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =
new UI_EVENT MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);

_errorSystem = new UI_ERROR WINDOW SYSTEM;
_helpSystem = new UI_HELP_WINDOW_SYSTEM("demo.hlp",
windowManager) ;

// Restore the basic error and help systems.
delete _errorSystem;
errorSystem = new UI_ERROR_SYSTEM;
delete _helpSystem;
_helpSystem = new UI_HELP_SYSTEM;

UI_ERROR_SYSTEM:: ~ Ul_ERROR_SYSTEM

Syntax #include <ui_win.hpp>

virtual UI_ERROR_SYSTEM:: ~ Ul_ERROR_SYSTEM(void);

Remarks This virtual destructor destroys the class information associated with
the UI_ERROR_SYSTEM object.

90 Zinc Interface Library — Programmer’s Reference

#include <ui_win.hpp>
Example #include “"demo.hlh"

?xampleFunct10n1()

// Initialize the Zinc Library Interface.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT MANAGER (100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

_errorSystem = new UI_ERROR_WINDOW_SYSTEM;
“helpSystem = new UI_HELP_WINDOW_SYSTEM("demo.hlp",
windowManager) ;

// Restore the basic error and help systems.
delete _helpSystem;
helpSystem = new UI_HELP_SYSTEM;
delete _errorSystenm;
_errorSystem = new UI_ERROR_SYSTEM;

// Clean up. Order is important!
delete _helpSystem;

delete _errorSystem;

delete windowManager;

delete eventManager;

delete display;

Ul_ERROR_SYSTEM::ReportError

Syntax #include <ui_win.h>

virtual void Ul_ERROR_SYSTEM::ReportError(
const UL_WINDOW_MANAGER *windowManager,
USHORT objectFlags, const char *format[, argument, ...]);

Remarks This virtual function is used to report an error via the error system.
The UI_ERROR_SYSTEM::ReportError function simply beeps. This
function is declared virtual, so additional error systems can be written
to override this function. All arguments—windowManager, objectFlags,
format and [argument, ...]—are unused by this function.

Chapter 10 - Ul_ERROR_SYSTEM 91

92

Example

#include <ui_win.hpp>
ExampleFunctioni ()
{

// Initialize the Zinc Library Interface.
UI_DOS _TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =
new UI_EVENT_MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);

// Since it is the default error system. This function just
/] beeps.
errorSeverity = "critical";
_errorSystem->ReportError(_windowManager, -1,

*This is a %s error.", errorSeverity);

Zinc Interface Library - Programmer’s Reference

CHAPTER 11 - UI_ERROR_WINDOW_SYSTEM

Overview The UI_ERROR_WINDOW_SYSTEM class is a windowed imple-
mentation of the UL_ERROR_SYSTEM class, which is used to report
run-time errors. The public members of the U ERROR_WINDOW _-
SYSTEM class (declared in UI_WIN.HPP) are:

class UI_ERROR_WINDOW_SYSTEM : public UI_ERROR_SYSTEM

{
public:
UI_ERROR_WINDOW_SYSTEM(void);
virtual “UI_ERROR_WINDOW SYSTEM(void),

virtual void ReportError (UI_WINDOW_MANAGER 'windowManager,
USHORT objectFlags, char *format,

b

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ERROR_SYSTEM

{
public:
virtual void Beep(void);

virtual void ReportError(UI_WINDOW_MANAGER *windowManager,
USHORT objectFlags, char *format,

)

¥s
class UI_ERROR_WINDOW_SYSTEM : public UI_ERROR_SYSTEM;

See also The example file XERR.CPP, which gives a complete example of the
UI_ERROR_WINDOW_SYSTEM class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the error system.

“Chapter 10—UI_ERROR_SYSTEM” of this manual, which describes

the base class from which the U_ ERROR_WINDOW _SYSTEM class
is derived.

Chapter 11 — UI_ERROR_WINDOW_SYSTEM 93

UI_ERROR_WINDOW_SYSTEM::UI_ERROR_WINDOW_SYSTEM

Syntax #include <ui_win.h>

UI_ERROR_WINDOW _SYSTEM::
UI_ERROR_WINDOW_SYSTEM(void);

Remarks This constructor returns a pointer to a new Ul_ERROR_WINDOW_-
SYSTEM class object.

NOTE: If the constructed error system class object is assigned to the
global variable _errorSystem it is not automatically destroyed by the
system. Therefore, the class object should be destroyed by the
programmer at the end of the application program.

Example #include <ui_win.hpp>
ExampleFunction1()
{

// Initialize the Zinc Library Interface.
UI_DOS_TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =
new UI_EVENT_ MANAGER (100, display);
UI_WINDOW _MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);

_errorSystem = new UI_ERROR_WINDOW SYSTEM;
_helpSystem = new UI_HELP_WINDOW_SYSTEM("demo.hlp",
windowManager) ;

// Restore the basic error and help systems.
delete _helpSystem;
helpSystem = new UI_HELP_SYSTEM;
delete _errorSystem;
_errorSystem = new UI_ERROR_SYSTEM;

94 Zinc Interface Library — Programmer’s Reference

UI_ERROR_WINDOW_SYSTEM:: ~ Ul_ERROR_WINDOW_SYSTEM

Syntax #include <ui_win.h>

virtual UL ERROR_WINDOW_SYSTEM::
~UI_ERROR_WINDOW_SYSTEM(void);

Remarks This virtual destructor destroys the class information associated with the

UL ERROR_WINDOW_SYSTEM object.

Example #include <ui_win.hpp>
#include "demo.hlh"

%xampleFunction1()

// Initialize the Zinc Library Interface.
UI_DOS _TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_ MANAGER (100, display);
UI_WINDOW_MANAGER *windowManager =

new UY_WINDOW_MANAGER(display, eventManager) ;

_errorSystem = new UI_ERROR _WINDOW SYSTEM;
“helpSystem = new UI_HELP_WINDOW_SYSTEM("demo.hlp",
windowManager) ;

// Restore the basic error and help systems.
delete _helpSystem;
helpSystem = new UI_HELP_SYSTEM;
delete _errorSystem;
_errorSystem = new UI_ERROR_SYSTEM;

// Restore the Zinc Library Interface. Order is important!
delete _helpSystem;

delete _errorSystem;

delete windowManager;

delete eventManager;

delete display;

Chapter 11 - Ul_ERROR_WINDOW_SYSTEM

95

UI_ERROR_WINDOW_SYSTEM::ReportError

96

Syntax

Remarks

Example

#include <ui_win.h>

virtual void Ul_ERROR_WINDOW_SYSTEM::ReportError(
const UI_WINDOW_MANAGER *windowManager,
USHORT objectFlags, const char *format], argument, ...]);

This function is used to report an error via the error system. The figure
below shows a graphic U ERROR_WINDOW_SYSTEM presentation
window:

Leave Unanswered Leave Inualid

tEDOO lslmo?alld. Tha value must be in the range 0

rouph

The error message is displayed in the text portion of the window (shown
as “15000 is not valid...”).

* windowManager,, is a pointer to the window manager where the
error message is to be displayed.

* objectFlags, indicate the type of action that can take place when the
error occurs. If the error code is not -1, the “Leave unanswered”
and “Leave invalid” options are selectable. The “Continue edit”
option is always available.

e format, is the printf style format that controls how the string is
converted.

* argument, ... are the printf style arguments that are used by the
format string.

#include <ui_win.hpp>
ExampleFunctioni()

// Initialize the Zinc Library Interface.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;

UI_EVENT MANAGER *eventManager =
new UI_EVENT_MANAGER (100, display);

Zinc Interface Library — Programmer’s Reference

UI_WINDOW_ MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);
_errorSystem = new UI_ERROR_WINDOW_SYSTEM;

// Report an error. -1 only allows the user to press escape.
// Since it is the window error system a window is displayed
// with the message.
errorSeverity = "critical’;
_errorSystem->ReportError(_windowManager, -1,

"This is a %s error.", errorSeverity);

Chapter 11 — UI_ERROR_WINDOW_SYSTEM

[
Qo
&
L
()
<
<
m
g
Q
|
;
m
]
£
g
N

CHAPTER 12 - Ul_EVENT

Overview The UI_EVENT structure is used to store all information passed
through the Zinc Interface Library. The Ul_EVENT structure (declared
in UI_EVL.HPP) has the following fields:

struct UI_KEY

UCHAR value;
UCHAR shiftState;

};

struct UI_POSITION
int column;
int line;

H
struct UI_REGION

int left;

int top;

int right;

int bottom;
};

struct UI_EVENT

int type;
USHORT rawCode;
union

UI_KEY key;

UI_REGION region;
UI_POSITION position;
void *data;

};

e 1ype is the type of event. Events are numbered as follows:

-32,767 to -1,000—Reserved by the Zinc Interface Library for
future use.

-999 to -1—Reserved by the Zinc Interface Library for system
messages. The following pre-defined system events (declared in
UI_EVT.HPP) are important for the programmer to understand:

S_CANCEL—The window manager received an event by
the end-user that was a request to cancel the information
in the current window. The current window can be
obtained by calling the UI_WINDOW_MANAGER::First
function.

Chapter 12 — Ul_EVENT 99

100

S_CONTINUE—A message sent by a programmer specified
procedure that requires a lot of processor time but wants
to check the status of the event queue or give time to other
device objects. If this message is sent to the event
manager, the next event received by the window object will
be the S_CONTINUE message.

S_ERROR—The window manager detected an error while
performing an operation on the last event.

S_NO_OBJECT—There are no objects in the window
manager. This message is sent back to the programmer
whenever the message is object specific and no object is
attached to the window manager.

S_REDISPLAY—Re-displays the screen display. Sending
this message causes the window manager to clear the screen
display and repaint all the windows attached to the display.

S_UNKNOWN-—The event passed to the window manager
was not recognized by the window manager or any window
attached to the screen display.

0 to 99—Reserved for raw device identifications. The following
constants (declared in UI_EVT.HPP) are pre-defined:

E_CURSOR(50)—Identification for the UI_CURSOR class
object.

E_DEVICE(99)—Identification for generic device
communication.

E_KEY(10)—Identification for the UI_BIOS_KEYBOARD
class object.

E_MOUSE(30)—Identification for the Ul_MS MOUSE
class object.

The following additional raw device identifications are reserved
by the Zinc Interface Library for future use: 11-19, 31-39, 50-59,
71-79, 90-98. The remaining values 0-9, 20-29, 40-49, 60-69,
80-89 can be used by the programmer.

Zinc Interface Library — Programmer’s Reference

100 to 9,999—Reserved by the Zinc Interface Library for logical

events. The following logical events (declared in
UI_MAPHPP) are important for the programmer (O
understand:

L_EXIT—The window manager received an event that
either mapped to the L_EXIT command, or an action was
performed that caused the window manager to generate the
L_EXIT command. If this command is received by the
programmer, program execution should be discontinued.

L_HELP—If this message is sent by the programmer to the
window manager, help will be displayed about the
application program. Otherwise, this message is received
by the programmer, indicating help has been presented 10
the end-user.

10,000 to 32,767—Available to the programmer for private use.
These values are not used by the Zinc Interface Library.

e rawCode is the raw code value for the type of sending device. The
following devices (declared in UI_EVT.HPP) use the rawCode event
field:

UI_BIOS_KEYBOARD—The rawCode for the keyboard device
is the raw scan code associated with the key. For example,
pressing <F1> generates a raw scan code of 0x3C00. In this
case, the UI_EVENT structure would contain the following
values:

event.type = E_KEY;

event.rawCode = 0x3C00;

event.key.value = 0; // low 8 bits of the rawCode.
event.key.shiftState = 0,

UI_MS_MOUSE—The rawCode for the mouse device is the
keyboard shift state (low 8 bits) and the mouse button state
(high 8 bits). For example, pressing the left mouse button
while holding the <Left-shift> key generates a raw code of
0x0102 (0x0002 for the <Left-shift> key and 0x0100 for the
left-mouse button). In this case, the UI_EVENT structure
would contain the following values:

Chapter 12 - UI_EVENT 101

102

See also

Example

event.type = E_MOUSE;

event.rawCode = 0x0102;

event.position.column = <current mouse column position>;
event.key.shiftState = <current mouse row position>;

* key, region, position and data are types of specific information
associated with the event. For more information about the contents
of these fields, refer to the type of event (discussed briefly above
and referenced below).

The example file XEVENT.CPP, which gives a complete example of the
UI_EVENT structure.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the use of events within the Zinc Interface Library.

“Chapter 1—UI_BIOS_KEYBOARD?” of this manual, which describes
an input device that uses the UI_EVENT structure to store input
information.

“Chapter 13—UI_EVENT_MANAGER” of this manual, which
describes the operation of class objects that generate event information.

“Chapter 14—UI_EVENT_MAP” of this manual, which describes the
use of event.types and event.rawCodes in the system event mapping
scheme.

“Chapter 18—UI_MS_MOUSE” of this manual, which describes an
input device that uses the UI_EVENT structure to store input
information.

“Chapter 24—UI_WINDOW_MANAGER” of this manual, which
describes the operation of a class object that receives and processes
event information.

#include <ui_win.hpp>
%xampleFunct10n1()

// Attach the devices directly to the event manager .
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

Zinc Interface Library — Programmer’s Reference

+ new UI_BIOS_KEYBOARD
+ new UI_MS_MOUSE
+ new UI_CURSOR;
UI_WINDOW_MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);

UI_EVENT event;

int ccode;

do

{
// Get an event from the event manager.
eventManager->Get (event, Q_NORMAL);

// Pass the event to the window manager.
windowManager->Event(event);
} while (ccode != L_EXIT);

}
static void Exit(void *item, UI_EVENT &event)

// Send an L_EXIT message through the system.

event.type = L_EXIT;

UI_EVENT MANAGER *eventManager =
((UIW_POP_UP_ITEM *)item)->eventManager;

eventManager->Put (event, Q_BEGIN);

%xampleFunctionZ()

// Construct the control pull-down item’'s menu.
pullDownItem = new UIW_PULL_DOWN_ITEM(* ~Control *,
MNF_NO_FLAGS, 0);
*pullDownItem
+ new UIW POP_UP ITEM("~Help...", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, Help));
+ new UIW POP_UP_ITEM(TE~"Xit", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, Exit));

Chapter 12 — UI_EVENT 103

104 Zinc Interface Library — Programmer’s Reference

CHAPTER 13 - Ul_EVENT_MANAGER

Overview

The UI_EVENT_MANAGER class serves as the control unit for input
devices and as the storage unit for event information that is processed
by the Zinc Interface Library modules (e.g., keyboard input information
as well as system messages). The graphic illustration below shows the
conceptual operation of the event manager within the library:

LZINC INTERFACE LIBRARY I

| WINDOW MANAGER |

The controlling portion of the UI_ EVENT_MANAGER class contains
a list of input devices that are either polled by the event manager (e.g.,
a keyboard device) or automatically interrupted by the device’s interrupt
service routine (e.g., a mouse device).

The storage portion of the Ul_EVENT _MANAGER class is imple-
mented as an array of UI_EVENT structures. The size of this array is
specified by the programmer when the event manager class is
constructed. Input devices feed to the event manager when they are
polled or when their interrupt routine is activated.

Chapter 13 — Ul_EVENT_MANAGER 105

106

See also

The public members of the U_EVENT_MANAGER class (declared in
UI_EVT.HPP) are:

class UI_EVENT_MANAGER

public:
UI_EVENT_MANAGER(int maxEvents, UI_DISPLAY *display);
virtual “UI_EVENT_MANAGER (void);

void Add(UI_DEVICE *device);

int DeviceState(int deviceType, USHORT deviceState);
int Event(const UI_EVENT &event);

UI_DEVICE *First(void);

int Get (UI_EVENT &event, USHORT flags);

UI_DEVICE *Last(void);

void Put(const UI_EVENT &event, USHORT flags);

void Subtract(UI_DEVICE *device);

UI_EVENT_MANAGER &operator + (UI_DEVICE *device)
} UI_EVENT_MANAGER &operator - (UI_DEVICE *device)
)

The example file XEVTMGR.CPP, which gives a complete example of
the UIl_EVENT _MANAGER class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the operation of event manager in the Zinc
Interface Library.

“Chapter 1—UI_BIOS_KEYBOARD?” of this manual, which describes
a device that can be attached to the event manager.

“Chapter 2—UI_CURSOR?” of this manual, which describes a device
that can be attached to the event manager.

“Chapter 4—UI_DEVICE” of this manual, which provides additional
information about the operation (e.g., addition, subtraction, state
change) of device classes within the event manager.

“Chapter 18—UI_MS_MOUSE” of this manual, which describes a
device that can be attached to the event manager.

Zinc Interface Library — Programmer’s Reference

UI_EVENT_MANAGER::UI_EVENT_MANAGER

Syntax #include <ui_evt.hpp>

UL EVENT MANAGER::UI_EVENT MANAGER (int maxEvents,
UI_DISPLAY *display);

Remarks This constructor returns a pointer to a new UI_EVENT MANAGER
class object. It must be called after the UL_DOS_TEXT_DISPLAY or
UI_DOS_BGI_DISPLAY class constructor has been called.

If multiple event managers are constructed, care must be taken to
ensure that devices are only attached to one event manager. If not, only
the event manager where the device was last attached will receive input
information from the device. Both event managers, however, will send
messages to the device.

e maxEvents,, tells the maximum number of events to reserve in the
event queue. The event manager automatically allocates space for
maxEvents.

s display,, is a pointer to the screen display. This pointer is used by
input devices when they display their information to the screen
display (e.g., the blinking cursor of the UI_CURSOR class object).

Example #include <ui_evt.hpp>
ExampleFunctioni()

UI_DOS_TEXT_DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

Chapter 13 - Ul_EVENT MANAGER 107

?xampleFunctionZ()

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

UI_EVENT_MANAGER:: ~ Ul_EVENT_MANAGER

Syntax #include <ui_evt.hpp>

virtual UI_EVENT_MANAGER:: ~ UL EVENT MANAGER (void);

Remarks This virtual destructor destroys the class information associated with the
UI_EVENT_MANAGER object and destroys the class information of
any input device that remains attached to the event manager.

Example #include <ui_evt.hpp>
ExampleFunctioni ()

UI_DOS TEXT DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

}/ The destructors for the display and event manager are
// automatically called when the scope of this routine ends.

%xampleFunctionZ()

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_MANAGER(100, display);
*eventManager

+ new UI_BIOS_ KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

108 Zinc Interface Library - Programmer’s Reference

// Destroy the event manager (with the keyboard, mouse and
// cursor) and the screen display.

delete eventManager;

delete display;

Ul_EVENT_MANAGER::Add

Syntax #include <ui_evthpp>

void Ul_EVENT_MANAGER::Add(UI_DEVICE *device);

Remarks This function adds a new device to the event manager. The position of
the device is determined by the event manager according to the device’s
type (device types are constant values ranging from 1 to 99). For
example, the devices UI_BIOS_KEYBOARD and UI_MS_MOUSE
each have a unique event identifier—E_KEY for UI_BIOS_-
KEYBOARD, and E_MOUSE for Ul_MS_MOUSE. The constant
value for E_KEY is 10, while the constant value for E_MOUSE is 30.
Thus, the UI_BIOS_KEYBOARD class object will always be placed in
the event manager’s device list before the UI_MS_MOUSE class object.
The order of devices in the event manager is important because of the
event manager’s polling algorithm. For example, a recording device
could be defined by the programmer. Such a device would need to be
the last device polled to guarantee that all input information (keyboard
and mouse) had been received by the event manager before the recorder
evaluated the input queue.

o device,, is a pointer to the new UI_DEVICE class object to be
added to the event manager’s device list.

Exarnple #include <ui_evt.hpp>
ExampleFunctioni()
{
// Attach the devices individually to the event manager.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =
new UI_EVENT_MANAGER (100, display);

UI_BIOS_KEYBOARD *keyboard = new UI_BIOS_KEYBOARD;
UI_MS_MOUSE *mouse = new UI_MS_MOUSE;

Chapter 13 — Ul_EVENT_MANAGER 109

eventManager->Add(keyboard) ;
eventManager->Add(mouse) ;
eventManager >Add(new UI_CURSOR) ;

UI_EVENT_MANAGER::DeviceState

Syntax #include <ui_evt.hpp>

int UI_EVENT_MANAGER::DeviceState(int deviceTjpe,
USHORT deviceState);

Remarks This function sends a programmer specified state message to all input
devices that match deviceType.

e returnValue,, is the new state of the device.

e deviceType,, is the device identification where the state message is
to be sent. The following device types (declared in UI_EVT.HPP)
may be specified:

E_CURSOR—Sends the state information to the UI_BIOS -
KEYBOARD class object (if it is in the device list).

E_DEVICE—Sends the state information to all input devices in
the event manager’s device list.

E_MOUSE—Sends the state information to the UI_MS -
MOUSE class object (if it is in the device list).

E_KEY—Sends the state information to the UI_BIOS -
KEYBOARD class object (if it is in the device list).

deviceState,, is the new state of the device. Allowable state changes
(declared in UI_EVT.HPP) can be:

D_ON—Turns the specified device on. If deviceType is

E_DEVICE, all devices in the event manager’s device list are
sent the D_ON message.

110 Zinc Interface Library - Programmer’s Reference

D_OFF—Turns the specified device off. If deviceType is
E_DEVICE, all devices in the event manager’s device list are
sent the D_OFF message.

D_STATE—Gets the state information associated with the
specified device. If deviceType is E_ DEVICE, only the state of
the last device in the event manager’s device list is returned.

Any other device state that is recognized by deviceType. For
example, the Ul_MS_MOUSE also recognizes the following
state information:

DM_EDIT—Displays a |’ cursor.
DM_DIAGONAL_ULLR—Displays a ‘<\’ cursor.
DM_DIAGONAL_LLUR—Displays a ‘».’ cursor.
DM_MOVE—Displays a hand cursor.
DM_HORIZONTAL—Displays a ‘»’ cursor.
DM_VERTICAL—Displays a ‘s’ cursor.
DM_VIEW—Displays a normal ‘<’cursor.
DM_WAIT—Displays an hour-glass cursor.

Example #include <ui_evt.hpp>
%xampleFunct10n1()

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_ KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

// Display an hour glass until the program is ready
// to receive user input.
eventManager->DeviceState(E_MOUSE, DM_WAIT);

Chapter 13 — Ul_EVENT_MANAGER 111

UI_EVENT_MANAGER::Get

112

Syntax

Remarks

#include <ui_evt.hpp>

int UL EVENT_MANAGER::Get(UI_EVENT &event,

USHORT flags);

This function gets an event from the event manager’s input queue, if
one is available.

returnValue,,, is set to 0 if an event was available and copied to the
event argument. Otherwise, a negative value is returned, indicating
that an event was not available for the type of request made.

event,,,, is a reference pointer to the event. This argument is a
copy of the event information.

flags,, indicates the type of read operation to perform with the
devices in the event manager’s list of devices. The following flags
(declared in ULEVT_HPP) specify the read operation:

Q_BEGIN—Retrieves the event from the beginning of the input
queue. Setting this flag forces the event manager to return the
oldest event in the event queue.

Q_BLOCK—Remains in the UI_EVENT_MANAGER::Get
function until an event is received from one of the input
devices.

Q_DESTROY—Destroys the event information from the event
manager after it is copied to event.

Q_END—Retrieves the event from the end of the input queue.
Setting this flag forces the event manager to return the most
recent event in the event queue.

Q_NO_BLOCK—Immediately returns from the UI_EVENT_-

MANAGER::Get function, event if there is not an event in the
event queue.

Zinc Interface Library — Programmer’s Reference

Q_NO_DESTROY—Does not destroy the event information
from the input queue. If this flag is set, the next call to
UI_EVENT_MANAGER::Get will return the same event.

Q_NO_POLL—Does not poll the devices before checking the
event queue. This is an advanced flag that should only be used
by UI_DEVICE class objects when they communicate with the
event manager. It prevents UI_DEVICE class objects from
being recursively called by the UI_EVENT_MANAGER:Get
routine.

Q_NORMAL—Performs a standard read operation. This flag
is equivalent to setting the Q_BLOCK, Q_BEGIN, Q_POLL
and Q_DESTROY flags.

Q_POLL—Makes sure all devices in the event manager’s device
list are called before information is retrieved from the event
queue. This enables the device objects (e.g., the keyboard and
cursor) to perform any polling operations (e.g., BIOS calls for
the keyboard device) before the event queue is examined.

Example #include <ui_win.hpp>
ExampleFunctioni()
{

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

GI_EVENT event;

int ccode;

do

{
// Get an event from the event manager.
eventManager->Get(event, Q_NORMAL);

// Pass the event to the window manager.
ccode = windowManager->Event(event);
) while (ccode != L_EXIT);

Chapter 13 — Ul_EVENT_MANAGER 113 |

UI_LEVENT_MANAGER::Put

114

Syntax

Remarks

Example

#include <ui_evt.hpp>

void UI_EVENT_MANAGER::Put(const UI_EVENT &event,
USHORT position);

This routine puts an event into the event queue.

e event, is a reference pointer to the event. This argument has the
event information that is put in the input queue.

* position;, indicates where to put the event. The following flags
(declared in UI_EVT.HPP) are recognized by the UI_EVENT -
MANGER::Put function:

Q_BEGIN—Puts the event information at the beginning of the
input queue.

Q_END—Puts the event information at the end of the input
queue.

#include <ui_win.hpp>
?tatic void Exit(void *item, UI_EVENT &event)

// Send an L_EXIT message through the system.
event.type = L_EXIT;
UI_EVENT_MANAGER *eventManager =
((UIW_POP_UP_ITEM *)item) ->eventManager;
} eventManager->Put (event, Q_BEGIN);

ExampleFunctioni ()
{

// Construct the control pull-down item’s menu.
pullDownItem = new UIW_PULL_DOWN_ITEM(* ~Control *,
MNF_NO_FLAGS, 0);
*pullDownItem
+ new UIW POP_UP _ITEM("~“Help..."', MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, Help));
+ new UIW POP_UP_ITEM(TE-Xxit", MNIF_NO FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, Exit));

Zinc Interface Library - Programmer’s Reference

UI_EVENT_MANAGER::Subtract

Syntax #include <ui_evt.hpp>

void Ul EVENT_MANAGER::Subtract(UIl_DEVICE *device);

Remarks This function removes the specified device from the event manager’s list
of devices. This routine does not call the destructor associated with the
device.

NOTE: If an input device (e.g, UI_BIOS_KEYBOARD, UI_CURSOR,
UI_MS_MOUSE) is attached to the event manager, it will automatically
be destroyed when the event manager is destroyed.

e device, is a pointer to the device to be removed from the event |
manager’s list of devices. The device class destructor is not called w
by UI_EVENT_MANAGER::Subtract. |

Example #include <ui_evt .hpp>
ExampleFunction1()
{

// Attach the devices individually to the event manager.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);

UI_BIOS_KEYBOARD *keyboard = new UI_BIOS_KEYBOARD;
UI_MS_MOUSE *mouse = new UI_MS_MOUSE;

eventManager->Add(keyboard) ;
eventManager ->Add(mouse) ;
eventuanager >Add(new UI_CURSOR) ;

éventManager->Subtract(keyboard);
eventManager->Subtract (mouse);

// This call automatically calls the destructor for UI_CURSOR.
delete eventManager;

delete keyboard;

delete mouse;

delete display;

Chapter 13 — UI_EVENT_MANAGER 115

UI_EVENT_MANAGER::operator +

116

Syntax

Remarks

Example

#include <ui_evt.hpp>

UI_EVENT_MANAGER &UI_EVENT_MANAGER::
operator + (UI_DEVICE *device),

This overload operator adds an input device to the event manager. This
operator overload is equivalent to calling the UI_EVENT_-
MANAGER::Add routine, except that it allows the chaining of device
additions to the event manager.

» returnValue,, is the U_EVENT_MANAGER reference. Returning
the reference to the UI_EVENT_MANAGER object allows
chaining of the UI_EVENT_MANAGER::operator+ overload
operator.

e device,, is a pointer to the UI_DEVICE class object to be added to
the event manager’s device list.

#include <ui_evt.hpp>
ExampleFunctioni ()
{

// Attach the devices individually to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);

UI_BIOS_KEYBOARD *keyboard = new UI_BIOS_KEYBOARD;
UI_MS_MOUSE *mouse = new UI_MS_MOUSE;
*eventManager

+ keyboard

+ mouse

+ new UI_CURSOR;

Zinc Interface Library - Programmer’s Reference

Ul_EVENT_MANAGER::operator -

Syntax #include <ui_evt.hpp>

UI_EVENT_MANAGER &UI_EVENT _MANAGER::
operator — (UL_DEVICE *device);

Remarks This overload operator removes an input device from the event
manager. This operator overload is equivalent to calling the
UI_EVENT_MANAGER::Delete routine, except that it allows the
chaining of device deletions from the event manager.

e returnValue, is the UI_EVENT _MANAGER reference. Returning
the reference to the UI_EVENT_MANAGER object allows
chaining of the UI_EVENT_MANAGER:::operator- overload
operator.

e device,, is a pointer to the Ul_DEVICE class object that is to be
deleted from the event manager’s device list.

Examp]e #include <ui_evt.hpp>
ExampleFunction1()
{

// Attach the devices individually to the event manager.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);

UI_BIOS_KEYBOARD *keyboard = new UI_BIOS_KEYBOARD;
UI_MS_MOUSE *mouse = new UI_MS_MOUSE;
*eventManager

+ keyboard

+ mouse

+ new UI_CURSOR;

*eventManager
- keyboard
- mouse;

// This call automatically calls the destructor for UI_CURSOR.
delete eventManager;

delete keyboard;

delete mouse;

delete display;

Chapter 13 — UI_EVENT_MANAGER 117

|
|
W
W

CHAPTER 14 - Ul_EVENT_MAP

Overview The UI_EVENT_MAP structure is used to map raw input device events
to logical events. For example, the Zinc Interface Library declares
default event mapping for the Ul_BIOS_KEYBOARD and UI_MS_-
MOUSE class objects. Some of their mapped values are:

<F1> — Mapped to L_HELP; a message that causes the system to
generate context-sensitive help information about the current
window.

<Ctrl C> — Mapped to L_EXIT, a message that causes program
execution to end.

<Ctrl F5> — Mapped to L_BEGIN_MARK for editable window
objects (e.g., UIW_DATE, UIW_STRING). This key allows end-
users to begin marked regions that can be cut or copied for later
use.

<Left-mouse-button drag> — Mapped to L_CONTINUE_MARK
for editable objects. This is equivalent to the <Ctrl F5> key that
begins a marked region.

<Left-mouse-button click> — Mapped to L_BEGIN_SELECT, an
option that selects a new window field for editing operations.

The UI_EVENT_MAP structure (declared in UI_MAPHPP) has the
following fields:

struct UI_EVENT_MAP

int windowlID;

int logicalValue;
int eventType;
USHORT rawCode;

e windowlD is the window identification for which the match applies.
(A full list of window identifications is given in UI_MAPHPP.)

Each window identification has an “ID_” prefix. Some example
window object identifications are:

Chapter 14 — UI_EVENT_MAP 119

120

ID_WINDOW_OBJECT—This identification is a default
identification associated with all class objects derived from the
UI_WINDOW_OBIJECT base class.

ID_BORDER—This identification is associated with the
UIW_BORDER class object.

ID_STRING—This identification is associated with the
UIW_STRING object or with any class object derived from the
UIW_STRING base class (e.g., UIW_DATE, UIW_TEXT).

logicalValue is the logical event to map. (A full list of logical values
is given in 'UI_MAPHPP.) Each logical value has an “L_” prefix.
Some example logical values are:

L_EXIT—Exits the application program.

L_BEGIN_MARK—Begins a mark region. This logical event
is understood by all editable window objects (e.g,
UIW_STRING, UIW_FORMATTED_STRING, UIW_TEXT).

L_WINDOW_NEXT—Moves to the next window. This logical
event is only understood by the window manager.

eventType is the raw device identification. The following event types
(declared in UI_EVT.HPP) are pre-defined by the Zinc Interface
Library:

E_KEY—Identification for the UI_BIOS_KEYBOARD class
object. This device generates keyboard input information.

E_MOUSE—Identification for the UI_MS_MOUSE class
object. This device generates mouse input information.

rawCode is a unique code that is used to map against the
event.rawCode value. The following input devices (declared in
UI_EVL.HPP) generate raw-code values that can be mapped with
the UI_EVENT_MAP structure:

UI_BIOS_KEYBOARD—The rawCode for the keyboard device
is the raw scan code associated with the key. For example,
pressing <F1> generates a raw scan code of 0x3C00.

Zinc Interface Library - Programmer’s Reference

UI_MS_MOUSE—The rawCode for the mouse device is the
keyboard shift state (low 8 bits) and the mouse button state
(high 8 bits). For example, pressing the left mouse button,
while holding the <Left-shift> key, generates a raw code of
0x0102 (0x0002 for the <Left-shift> key and 0x0100 for the
left-mouse button).

In the Zinc Interface Library, raw events, received from input devices at
run-time, are interpreted at each level of the application according to
the type of operation. For example, the graphic illustration below
shows how the <Ctrl F5> key and left mouse click would be
interpreted at each level of the Zinc Interface Library (where a text field
is the current window object):

| EVENT MAPPING .

IKEYBOAFID] [MOUSE]

E_KEY, ctrlf§ E_MOUSE, left down ciick
C EVENT QUEUE)
Ul_WINDOW_MANAGER <«ag----------
L_BEGIN_SELECT Y
Ulw_WlNDOW oo ennnnneeennennn d []——{ Hello World]|—[| [

L_BEGIN_SELECT

UIW_TEXT gl eeeeeeeeenennees Hello, World|
L_BEGIN_MARK

The <Ctrl F5> key and left-mouse button are processed in the
following manner:

o first, the key or mouse information is received by the input device
(i.e., UI_BIOS_KEYBOARD and UI_MS_MOUSE) and placed in
the event queue.

¢ second, the window manager evaluates the event and passes it to the
proper window. The mouse event is interpreted as an L_BEGIN_-
SELECT logical event, while the keyboard event is passed directly
to the window.

Chapter 14 — UI_EVENT_MAP 121

e third, the window evaluates the event and passes it to the proper
window object. The mouse event is interpreted as an L_BEGIN_-
SELECT logical event, while the keyboard event is passed directly
to the UIW_TEXT window object.

 finally, the UIW_TEXT window object evaluates both the keyboard
and mouse events as the L_BEGIN_MARK command.

Logical mapping is accomplished through an event mapping procedure
that uses the UI_EVENT_MAP structure as the interpretation key.
The example above showed the use of three logical map entries:

// Mouse mapping for UIW_TEXT.
{ ID_TEXT, L_BEGIN_MARK, E MOUSE, M_LEFT | M_LEFT_CHANGE }

// Keyboard mapping for UIW TEXT
{ ID_TEXT, L_BEGIN_MARK, E_KEY, CTRL F5 }

// Mouse mapping for UIW_WINDOW and UI_WINDOW_MANAGER.
{ ID_WINDOW_OBJECT, L_BEGIN SELECT,
E_MOUSE, M_| LEFT | M_LEFT_ CHANGE }

Whenever a class object receives an event, it gets a logical interpretation
from the MapEvent function. For example, the following partial code
segment is used by the window manager whenever it gets an event:

int UI_WINDOW_MANAGER::Event(const UI_EVENT &event)
{
// Get the logical event.
int ccode = MapEvent(eventMapTable, event,
ID_WINDOW_MANAGER, ID_WINDOW_MANAGER) ;

// Proceed according to the event type.
?witch (ccode)

case L_WINDOW_MOVE:
case L_WINDOW_SIZE:

case L_VIEW:

case L_BEGIN SELECT:
case L_CONTINUE_SELECT:
case L_| END_SELECT:

}

The figure below shows the logical event hierarchy:

122 Zinc Interface Library — Programmer’s Reference

|WINDOW IDENTIFICATION HIERARCHY I

ID_WINDOW_MANAGER:ssssssssjien “D_WINDOW_OBJECT |

D_POP_UP_MENU
D_PULL_DOWN_MENU

When the MapEvent function is called by a window class object, the
closest matching event is returned. For example, the UIW_TEXT class
object matches according to the following event map hierarchy:

ID_TEXT—This is the best matching event type for the
UIW_TEXT class object.

ID_STRING—This is the identification for the text object’s parent
class (UIW_STRING).

ID_WINDOW_OBJECT—This is the basic identification for all
window objects.

Global UI_EVENT_MAP *_eventMapTable is a pointer to the event map table
variables used by all UI_WINDOW_OBIJECT class objects and the window
manager to determine the logical meaning of raw events. The external
declaration for this variable is contained in UI_MAPHPP. The actual

declaration of this variable is contained in G_EVENT.CPP.

UI_EVENT_MAP *_hotKeyMapTable is a pointer to the hot key table
used by all high-level windows to determine sub-object hot key
equivalents. The external declaration for this variable is contained in
UI_MAPHPP. The actual declaration of this variable is contained in
G_HOTKEY.CPP.

Chapter 14 — Ul_EVENT_MAP 123

See also The example file XEVTMAP.CPP, which gives a complete example of
the UI_EVENT_MAP structure.

“Chapter 4—Default Event Mapping” of the Programmer’s Guide,
which describes the default event map table used by the Zinc Interface
Library.

MapEvent

Syntax #include <ui_map.h>

int MapEvent(UI_EVENT_MAP *mapTable,

const UI_EVENT &event, int currentID,
int idl = ID_WINDOW_OBJECT,

int id2 = ID_WINDOW_OBIJECT,

int id3 = ID_WINDOW_OBJECT,

int id4 = ID_WINDOW_OBJECT);

Remarks This function provides the logical mapping (if any) of a raw event.

124

retumValue,, is the logical event that matches the event and
identification parameters. If no match occurs, this value is
event.type (the event type passed into the match function).

mapTable,, is a pointer to the event map table to be used by the
event mapping function.

event,, is the raw event to be mapped. The event.type and
event.rawCode values are used by the event mapping function.

currentID,, is the object identification to use as the best match. For

example, the UIW_TEXT uses ID_TEXT as the current
identification for its best match.

Zinc Interface Library — Programmer’s Reference

e idl,, id2,, id3, and id4, are hierarchal identification values to use
while mterpretmg the raw event. For example, the UIW_TEXT
class object uses the following identification values when it looks for

a logical mapping:

idl—ID_TEXT
id2—ID_STRING
id3—ID_WINDOW_OBIJECT
idd—unused

Example #include <ui_evt.hpp>
static UI_EVENT_MAP _myHotKeyMapTable[]
{

/* ID_WINDOW_OBJECT */

ID_WINDOW_OBJECT, HOT_KEY_SYSTEM, E_KEY, ALT_PERIOD },

{ ID_WINDOW_OBJECT, HOT_KEY_SYSTEM, E_KEY, ALT _SPACE },

{ ID_WINDOW_OBJECT, HOT_ KEY_MINIMIZE “E. KEY ALT_WHITE_MINUS },
{ ID_WINDOW_OBJECT, HOT_KEY_MINIMIZE, E_KEY, ALT_GRAY_MINUS },
% ID_WINDOW_OBJECT, HOT_KEY_MAXIMIZE, E_KEY, ALT_WHITE_PLUS },
ficd
{

——

ID—WINDOW-OBJECT HOT_KEY_MAXIMIZE, E_KEY, ALT GRAY_| PLUS }
End of array */
ID_END, 0, 0, O }

}s

const int MY_EVENT = -1;
static UI_EVENT_MAP myEventMapTable[]

{
/* MY_EVENT */
{ MY EVENT LSEXIT;~E KEY;: ALT F10 },
{ MY_ _EVENT, L EXIT, E KEY, ALT X }y
/* End of array i |
i { ID_END, O, O,
L

%xampleFunct10n1()

// Initialize the Zinc Interface Library.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_KEYBOARD + new UI_MS_MOUSE + new UI_CURSOR;
UI_WINDOW MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

}/ Simplify the global hot key table.
_hotKeyTable = _myHotKeyMapTable;

Chapter 14 — UI_EVENT_MAP 125

126

// Process the system events,
UI_EVENT event;
do

// Get an event from the event manager.
event.type = MapEvent(myEventMapTable, event,
MY_EVENT, MY_EVENT);

if (event.type != L_EXIT)
event.type = windowManager->Event(event);

} while (event.type != L_EXIT);

Zinc Interface Library — Programmer’s Reference

CHAPTER 15 - Ul_HELP_SYSTEM

Overview

Global
variables

See also

The UI_HELP_SYSTEM class is the base class that Zinc Interface
Library uses to give help to an end-user during run-time. It is the
default help class if no other class is specified. The public members of
the UI_HELP_SYSTEM class (declared in UI_WIN.HPP) are:

class UI_HELP_SYSTEM

public:
UCHAR installed;

// UI_HELP_SYSTEM(void);
virtual -UT_HELP_SYSTEM(void);

virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,
int helpContext);
};

o installed indicates whether the help system successfully installed.

This value is TRUE if the help system is activated. Otherwise, this
value is FALSE.

UI_HELP_SYSTEM *_helpSystem is a pointer to the Zinc Interface
help system. The default setting for this variable points to a static
UI_HELP_SYSTEM class object. The external declaration for this
variable is contained in UI_WIN.HPP. The actual declaration of this
variable is contained in G_HELP.CPP.

The example file XHELP.CPP, which gives a complete example of the
UI_HELP_SYSTEM class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the help system.

“Chapter 16—UI_HELP_WINDOW_SYSTEM?” of this manual, which
describes a window based help system class.

Chapter 15 — Ul_HELP_SYSTEM 127

UI_HELP_SYSTEM::Ul_HELP_SYSTEM

Syntax

Remarks

Example

#include <ui_win.h>

UI_HELP_SYSTEM::UI_HELP_SYSTEM (void);

This constructor returns a pointer to a new UL_HELP_SYSTEM class
object.

#include <ui_win.hpp>
%xampleFunct10n1()

// Initialize the Zinc Library Interface.
UI_DOS_TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =
new UI_EVENT MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager) ;

_errorSystem = new UI_ERROR_WINDOW SYSTEM;
_helpSystem = new UI_HELP_WINDOW_SYSTEM("demo.hlp",
windowManager) ;

// Restore the basic error and help systems.
delete _helpSystem;
helpSystem = new UI_HELP_SYSTEM;
delete _errorSystem;
_errorSystem = new UI_ERROR_SYSTEM;

// Restore the Zinc Library Interface. Order is important!
delete _helpSystem;

delete _errorSystem;

delete windowManager;

delete eventManager;

delete display;

UI_HELP_SYSTEM:: ~ Ul_HELP_SYSTEM

Syntax

Remarks

128

#include <ui_win.h>

virtual UI_HELP_SYSTEM:: ~ UI_HELP_SYSTEM(void);

This virtual destructor destroys the class information associated with the
UI_HELP_SYSTEM object.

Zinc Interface Library — Programmer’s Reference

NOTE: If the programmer re-defines the _helpSystem global variable the
destructor for the help system is not called by the Zinc Interface
Library.

Example #include <ui_win.hpp>
P #include "demo.hlh"

%xampleFunction1()

// Initialize the Zinc Library Interface.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

_errorSystem = new UI_ERROR_WINDOW_SYSTEM;
_helpSystem = new UI_HELP_WINDOW_SYSTEM("demo.hlp"*,
windowManager) ;

// Restore the basic error and help systems.
delete _helpSystem;

_helpSystem = new UI_HELP_SYSTEM;

delete _errorSystem;

_errorSystem = new UI_ERROR_SYSTEM;

// Restore the Zinc Library Interface. Order is important!
delete _helpSystem;

delete _errorSystem;

delete windowManager;

delete eventManager;

delete display;

Ul_HELP_SYSTEM::DisplayHelp

Syntax #include <ui_win.h>

virtual void UI_HELP_SYSTEM::DisplayHelp(
UI_WINDOW_MANAGER *windowManager, int helpContext);

Remarks This virtual function is used to present help information via the help
system. The UI_HELP_SYSTEM::DisplayHelp function is a stub. This
function is declared virtual so that additional help systems can be
written to override the function. All arguments—windowManager and
helpContext —are unused by this function.

Chapter 15 — Ul_HELP_SYSTEM 129

130 Zinc Interface Library — Programmer’s Reference

CHAPTER 16 - Ul_HELP_WINDOW_SYSTEM

Overview The UI_HELP_WINDOW_SYSTEM class is a windowed imple-
mentation of the UI_HELP_SYSTEM class, which is used to display
help to the end-user during an application. The public members of the
UI_HELP_WINDOW_SYSTEM class (declared in UI_WIN.HPP) are:

class UI_HELP_WINDOW_SYSTEM : public UI_HELP_SYSTEM

{
public:
UI_HELP_WINDOW_SYSTEM(char *helpFileName,
UI_WINDOW MANAGER *windowManager,
int defauIltHelpContext = NO_HELP_CONTEXT);
virtual “UI_HELP_WINDOW_SYSTEM(Void)7

virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,
int helpContext);

b

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_HELP_SYSTEM

{
public:
UCHAR installed;

virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,
int helpContext);

};
class UI_HELP_WINDOW_SYSTEM : public UI_HELP_SYSTEM;

Global UI_HELP_SYSTEM *_helpSystem is a pointer to the Zinc Interface

variables Library help system. To use this windowed help system this pointer

must be set to the constructed Ul_HELP_WINDOW_SYSTEM class

object. The external declaration for this variable is contained in

UI_WIN.HPP. The actual declaration of this variable is contained in
G_HELP.CPP.

Generating The help context information is read from a binary help file on the disk
help files when needed. This file is created from an ascii text file using the
GENHELPEXE utility which is supplied with the Zinc Interface Library.

Chapter 16 — Ul_HELP_WINDOW_SYSTEM 131

132

For example, the text file NOTEPAD.TXT below was converted into a
binary help file using GENHELP.EXE:

--- HELP_GENERAL 1 ---

General Help

This application demonstrates how to mark, cut, copy and
paste between windows.

Press <Esc> to continue...
--- HELP_NOTEPAD 2 ---

Notepad Help
Use the following keys to move information between the windows.

Mark - <Ctrl F5> or <Left-drag> on the mouse \
Cut - <Ctrl F6> or <Right-down-click> on the mouse \
Copy - <Ctrl F7> or <Left-down><Right-down-click> the mouse \
Paste - <Ctrl F8> or <Right-down-click> on the mouse \
Undo - <Ctrl F9> \
Redo - <Ctrl F10>

Press <Esc> to continue...

There are two help contexts in the example above. Each one is
preceded by the help context name and unique identification number,
enclosed by three dashes on both sides. The first line after the help
context name is the title that is displayed in the help window at run-
time. All lines between the title and the next help context or file end
are displayed inside the scrollable help window. Each of these lines is
displayed in the window without the carriage return at the end of the
line, unless it is followed by either a blank line or a backslash. For
example, two consecutive lines without a backslash are equivalent to one
long line.

Typing “genhelp notepad.txt” at the DOS command line generates two
files. Be sure that the file GENHELPEXE, located in the UTIL
directory, is included in the environment PATH variable.

The first file generated is the binary help file NOTEPAD.HLP and the
second file is a header file named NOTEPAD.HLH. The header file
should be included in each module of the program, since it contains
declarations for the constants used to reference the help context
information. The generated header file appears as follows:

// This file was created by the genhelp utility.
// PLEASE DO NOT MODIFY WITH AN EDITOR!.

const int HELP_GENERAL
const int HELP_NOTEPAD

1; // General Help
2; // Notepad Help

Zinc Interface Library — Programmer’s Reference

The help context information in the text file can be modified and
regenerated without recompiling the program if the help context names
do not change. This is very useful if international versions of the
application require different help files.

See also The example file XHELP.CPP, which gives a complete example of the
UI_HELP_WINDOW_SYSTEM class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the help system.

“Chapter 15—UI_HELP_SYSTEM?” of this manual, which describes the

base class from which the Ul_HELP_WINDOW_SYSTEM class is
derived.

Ul_HELP_WINDOW_SYSTEM::UI_HELP_WINDOW_SYSTEM

Syntax #include <ui_win.h>
#include "filename.hlh"

UI_HELP_WINDOW_SYSTEM::UI_HELP_WINDOW_SYSTEM(
char *helpFileName,
UI_WINDOW_MANAGER *windowManager,
int defaultHelpContext = NO_HELP_CONTEXT);

Remarks This constructor returns a pointer to a new Ul_HELP_WINDOW_-
SYSTEM class object.

e helpFileName,, is a pointer to a string containing the name of the
binary help file. This file is generated from an ascii text file using
the GENHELPEXE utility.

e windowManager,, is a pointer to the window manager. It is used by
the help system to display the help window on the screen display.

e defaultHelpContext,, is the help context to present when no specific
help context is available.

Chapter 16 — Ul_HELP_WINDOW_SYSTEM 133

#include <ui_win.hpp>
Example #include "notepad.hlh"

ExanpleFunction1()

// Initialize the Zinc Library Interface.
UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI EVENT MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager) ;

_errorSystem = new UI_ERROR_WINDOW_SYSTEM;
_helpSystem = new UI_HELP_WINDOW_SYSTEM(*notepad.hlp",
windowManager, HELP_GENERAL)

// Restore the basic error and help systems.
delete _helpSystem;
helpSystem = new UI_HELP_SYSTEM;
delete _errorSystem;
_errorSystem = new UI_ERROR_SYSTEM;

UI_HELP_WINDOW_SYSTEM:: ~ Ul_HELP_WINDOW_SYSTEM

Syntax #include <ui_win.h>
#include "filename.hlh"

virtual UI_HELP_WINDOW _SYSTEM::
~ UI_HELP_WINDOW _SYSTEM(void);

Remarks This virtual destructor destroys the class information associated with the
UI_HELP_WINDOW_SYSTEM object.

mpl #include <ui_win.hpp>
Exa ple #include "notepad.hlh"*

ExampleFunction1()

// Initialize the Zinc Library Interface.
UI_DOS _TEXT DISPLAY *display = new UI_DOS_TEXT DISPLAY;
UI_EVENT_MANAGER *eventManager =
new UI_EVENT_MANAGER(100, display);
UI_WINDOW MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager) ;

_errorSystem = new UI_ERROR_WINDOW_SYSTEM;

_helpSystem = new UI_HELP_WINDOW_SYSTEM(‘notepad.hlp",
windowManager, HELP_GENERAL);

134 Zinc Interface Library — Programmer’s Reference

// Restore the basic error and help systems.
delete _helpSystem;
_helpSystem = new UI _HELP_SYSTEM;
delete _errorSystem
_errorSystem = new UI ERROR_SYSTEM;

// Restore the Zinc Library Interface. Order is important!
delete _helpSystem;

delete _errorSystem;

delete windowManager;

delete eventManager;

delete display;

UI_HELP_WINDOW_SYSTEM::DisplayHelp

Syntax #include <ui_win.h>
#include "filename.hlh"

virtual void UI_HELP_WINDOW_SYSTEM::
DisplayHelp(UI_WINDOW_MANAGER *windowManager,
int helpContext);

Remarks This function is used to present help information via the help system.
The pictures below show graphic and text implementations of the
UI_HELP_WINDOW_SYSTEM presentation window:

R bR e ca
IEaeuTND - S e, SNTL VS T AR, SAEee tihrary

u:;},c.?-"‘".':*sm rtnc:*-ti- S The 1 JRrE ST Fna tne
e

BRres keu"In Teulraiten ux?ﬂ Pirsc"Te¥ear

mif."%g::sgggg:"; 4 fﬁuzm B1R288 A2nlh" P5mSkie

» windowManager,, is a pointer to the window manager where the
help window is to be presented.

e helpContext,, is the help context to present. If this value is
NO_HELP_CONTEXT the help window system will use the default
help context provided in the UI_HELP_WINDOW_SYSTEM
constructor.

Chapter 16 — Ul_HELP_WINDOW_SYSTEM 135

#include <ui_win.hpp>
Exan1ple #include "phonebk.hlh"

ExampleFunctioni ()

// Initialize the Zinc Library Interface.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT MANAGER(100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

_errorSystem = new UI_ERROR_WINDOW_SYSTEM;
“helpSystem = new UI_HELP_WINDOW_SYSTEM("*phonebk.hlp",
windowManager, HELP_GENERAL);

}/ Call the help system to _display general help.
_helpSystem->DisplayHelp(_windowManager, HELP_PHONE) ;

136 Zinc Interface Library — Programmer’s Reference

CHAPTER 17 - UL_LIST

Overview The UI_LIST class is used to store doubly-linked list elements derived
from the UIl_ELEMENT base class. All elements in a list must be
derived from the UI_ELEMENT class since all list member functions
act upon UI_ELEMENT class objects. The public members of the
UIL_LIST class (declared in UI_GEN.HPP) are:

class UI_LIST

{
public:
UI_ELEMENT *first;
UI_ELEMENT *last;
UI_ELEMENT *current;
int (*compareFunction) (void *element1, void *element2);

UI_LIST(
int (*compare)(void *element1, void *element2) = NULL);
virtual “UI_LIST(void);

UI_ELEMENT *Add(UI_ELEMENT *newElement);

UI_ELEMENT *Add(UI_ELEMENT *element,
UI_ELEMENT *newElement);

int Count(void);

vold Destroy(void);

UI_ELEMENT 'Get(int index);

UI_ELEMENT *Get(int (*findFunction)(void *element,
void *matchData), void *matchData);

int Index(UI_ELEMENT const *element);

void Sort(void);

UI_ELEMENT *Subtract(UI ELEMENT *element);

UI_LIST &operator + (UI_ELEMENT *element);
} UI_LIST &operator - (UI_ELEMENT *element);
3

e first and last point to the first and last elements in the list.

e current points to the current element (or derived element class) in
the list. This member is unused by UI_LIST class member
functions and is available for use by the programmer.

e compareFunction is used by the list to determine the order of each
element when the list is sorted. The two void element pointer
arguments must be typecast when the specified compare function is
called.

See also The example file XLIST.CPP, which gives a complete example of the
UL_LIST class.

Chapter 17 — UI_LIST 137

“Chapter 9—UI_ELEMENT” of this manual, which describes the list
elements used by the UI_LIST class.

“Chapter 13—UI_EVENT_MANAGER” of this manual, which
describes a class that uses the UI_LIST class to store input devices.

“Chapter 24—UI_WINDOW_MANAGER” of this manual, which
describes a class that uses the UI_LIST class to store windows.

“Chapter 46—UIW_WINDOW?” of this manual, which describes a class
that uses the UI_LIST class to store window objects.

UL_LIST::UI_LIST

138

Syntax

Remarks

#include <ui_gen.hpp>

UIL_LIST::UI_LIST(
int (*compare) (void *element1, void *element2) = NULL);

This constructor returns a pointer to a new UI_LIST object.

* compare, is a programmer defined function that is used to
determine the order of list elements. The following arguments are
passed to compare:

elementl;,,—A pointer to the first argument to compare. This
argument must be typecast by the programmer.

element2,,—A pointer to the second argument to compare.
This argument must be typecast by the programmer.

The compare function’s returnValue should be 0 if the two elements
exactly match. If a negative value is returned, then element] is less than

element2. Otherwise, a positive value indicates that element] is greater
than element2.

Zinc Interface Library - Programmer’s Reference

Example #include <string.h> // include for the ITEM class.
#include <stdio.h> /! include for the ITEM class.
#include <ui_gen.hpp>

// Define a derived class from the UI_ELEMENT base class.
class ITEM : public UI_ELEMENT

private:
char *name;

public:
ITEM(char *a_name)
{ name = strdup(a_name); }
“ITEM(void)
{ delete name; }
static Compare(void *item1, void *item2)
{ return (strcmp(((ITEM *)item1)->name,
((ITEM *)item2)->name)); }
static Find(void *item1, void *matchData)
{ return (strcmp(((ITEM *)item1)->name,
) (char *)matchData)); }
’

ExampleFunctioni()
{

// Each declaration below calls the UI_LIST constructor.
UI_LIST listi;

UI_LIST *1list2 = new UI_LIST;

UI_LIST 1ist3(ITEM: :Compare);

UI_LIST *1ist4 = new UI_LIST(ITEM: :Compare);

UL_LIST:: ~ UL_LIST

Syntax #include <ui_gen.hpp>

virtual UI_LIST:: ~ UI_LIST(void);

Remarks This virtual destructor destroys the class information associated with the
UL_LIST object. This destructor calls the destructor associated with
each element in the list.

Chapter 17 — Ul_LIST 139

Example

UL_LIST::Add

#include <string.h> // include for the ITEM class.
#include <stdio.h> // include for the ITEM class.
#include <ui_gen.hpp>

// Define a derived class from the UI_ELEMENT base class.
class ITEM : public UI_ELEMENT
{

private:
char *name;

public:
ITEM(char *a_name)
{ name = strdup(a_name); }
“ITEM(void)
{ delete name; }
static Compare(void *item1, void *item2)
{ return (strcmp(((ITEM *)item1)->name,
((ITEM *)item2)->name)); }
static Find(void *item1, void *matchData)
{ return (strcmp(((ITEM *)item1)->name,
(char *)matchData)); }
b

ExampleFunctioni ()
{

UI_LIST 1listi;

UI_LIST *1ist2 = new UI_LIST;

UI_LIST 1ist3(ITEM: :Compare);

UI_LIST *1ist4 = new UI_LIST(ITEM: :Compare);

.

// Call the destructor for lists 2 and 4. The list1 and

// 1ist3 destructors are automatically called when the scope
// of this routine ends.

delete list2;

delete 1list4;

140

Syntax

Remarks

#include <ui_gen.hpp>

UI_ELEMENT *UI_LIST::Add(UI_ELEMENT *newElement);
or

UI_ELEMENT *UI_LIST::Add(UI_ELEMENT *element,
UI_ELEMENT *newElement);

These overloaded functions are used to add a new element to the
UL_LIST object.

The first overloaded function adds a new element to the UI_LIST object

into a position specified by the list’s compareFunction. The new element
must be a class object derived from the UI_ELEMENT base class. If

Zinc Interface Library — Programmer’s Reference

no compare function is specified when the list is constructed,
newElement is added to the end of the list.

e returnValue,, is a pointer to newElement if the addition was
successful. Otherwise, the return value is NULL.

e newElement,, is a pointer to the element to be added to the list.
This argument must be a class object derived from the
UI_ELEMENT base class.

The second overloaded function overrides the list’s compareFunction by
inserting newElement directly before element. The new element must be
a class object derived from the UI_ELEMENT base class. The
UI_LIST::Sort routine must be called to sort the list when this routine
is used.

e returnValue,, is a pointer to newElement if the addition was
successful. Otherwise, the return value is NULL.

e element,, is a pointer to an element before which the new element
is to be placed. If this variable is NULL, the routine adds
newElement to the end of the list.

e newElement,, is a pointer to the element to be added to the list.
This argument must be a class object derived from the
UI_ELEMENT base class.

Exarnple #include <string.h> // include for the ITEM class
#include <stdio.h> // include for the ITEM class
#include <ui_gen.hpp>

// Define a derived class from the UI_ELEMENT base class.
class ITEM : public UI_ELEMENT

{
private:
char *name;

public:
ITEM(char *a_name)
{ name = strdup(a_name); }
“ITEM(void)
{ delete name; }
static Compare(void *item1, void *item2)
{ return (strcmp(((ITEM *)item1)->name,
((ITEM *)item2)->name)); }
static Find(void *item1, void *matchData)
{ return (strcmp(((ITEM *)item1)->name,
} (char *)matchData)); }
L

Chapter 17 — UI_LIST 141

ExampleFunct10n1()

// Add elements to a lists.
UI_LIST 1isti;

list1.Add(new UI_ELEMENT);
list1.Add(new UI_ELEMENT);

¥

?xampleFunctionz()
// Add items to a list. The items are automatically added
// in ascending order.
UI_LIST *1ist2 = new LIST(ITEM: :Compare);
list2->Add(new ITEM("Item2");
list2->Add(new ITEM("Item1");

}

UL_LIST::Count
Syntax #include <ui_gen.hpp>

Remarks

Example

142

int UI_LIST::Count(void);

This routine counts the number of elements in the UI_LIST object.

e returnValue,, is a value containing the number of elements in the
list.

#include <ui_gen.hpp>
ExampleFunctioni ()
UI_LIST 1list1;

1ist1.Add(NULL, new UI_ELEMENT);
list1.Add(NULL, new UI_ELEMENT);

}/ Count the number of elements in the list.
int count = 1list1.Count();

Zinc Interface Library - Programmer’s Reference

UI_LIST::Destroy

Syntax #include <ui_gen.hpp>

void UI_LIST::Destroy(void);

Remarks This routine calls the destructor associated with each element in the
UL_LIST object, then clears the first, last and current members. The
list’s compareFunction remains unchanged.

Example #include <ui_gen.hpp>
ExanpleFunctlon1()

UI_LIST listi;
UI_ELEMENT *element1 = new UI_ELEMENT;
list1.Add(element1);

// Destroy all the elements of the list.
list1.Destroy();

}
ExampleFunction2()
{

UI_LIST *1ist2 = new LIST;
*1Ist2 + new UI_ELEMENT + new UI_ELEMENT + new UI_ELEMENT;

// Destructively remove all items from the list. The

/| element destructor is called for each item in the list.

// Notice we have to also call delete on the list, since it was
// dynamically constructed.

list2->Destroy();

delete 1list2;

Chapter 17 — UI_LIST 143

UL_LIST::Get

144

Syntax

Remarks

#include <ui_gen.hpp>

UI_ELEMENT *UI_LIST::Get(int index);

or

UI_ELEMENT *UI_LIST::Get(

int (*findFunction)(void *element, void *matchData),
void *matchData);

These overloaded functions are used to get a specific list element.

The first overloaded function returns the list element specified by index.
The first element in the list has an index value of 0. If the index value
is invalid, NULL is returned.

returnValue,,, is a pointer to the matching element of the list. This
value is NULL if no element matched the index value.

index;, is the index of the list element to find. List element indexes
are zero based (i.e., the first element in a list has an index value of
0).

The second overloaded function searches the UI_LIST object for a
pattern matched by findFunction. This method eliminates the need for
the programmer to set up a loop to access a specific element in the list
but where the element’s index is unknown.

returnValue,,, is a pointer to the matching list element. This value
is NULL if no element matches matchData.

findFunction,, is a pointer to a programmer supplied function that
compares a specified element with the typecast matchData. If an
exact match is made this function must return a 0. Any non-zero
value indicates no match was made.

matchData,, is a pointer to the data to be matched. This can point
to any data the programmer desires to match. The UI_LIST:Get
routine will call the findFunction routine with this argument as the
matchData parameter.

Zinc Interface Library - Programmer’s Reference

Example

#include <string.h> // include for the ITEM class
#include <stdio.h> // include for the ITEM class
#include <ui_gen.hpp>

// Define a derived class from the UI_ELEMENT base class.

class ITEM : public UI_ELEMENT

{
private:
char *name;

public:
ITEM(char *a_name)
{ name ="strdup(a_name); }
“ITEM(void)
{ delete name; }
static Compare(void *item1, void *item2)
{ return (strcmp(((ITEM *)item1)->name,
((ITEM *)item2)->name)); }
static Find(void *item1, void *matchData)
{ return (strcmp(((ITEM *)item1)->name,
} (char *)matchData)); }
3

ExampleFunctioni ()

UI_LIST 1list;
1ist + new ITEM(Item1") + new ITEM("Item2");

// Get the 2nd element in the list.
UI_ELEMENT *element = list.Get(2);
// Get the element that matches the "Item2" pattern
ITEM *item = (ITEM *)1list.Get(ITEM::Find, "Item2");

}

FindElement(void *element1, void *element2)
return ((elementl == element2) ? 0 : -1);

%xampleFunctionZ()

UI_LIST 1list2;

ITEM *item;

*1ist2
+ new ITEM('Item3")
+ (item = new ITEM(Itemt"))
+ new ITEM(“Item2");

}/ Get the first element in the list.
ITEM *item = (ITEM *)1list.Get(0);

// See if item is still in the list.
if (list.Get(FindElement, item))
cout << "Item1 was found in the list.";
else
cout << "Item1 was NOT found in the list.";

Chapter 17 — Ul_LIST

145

UI_LIST::Index

Syntax #include <ui_gen.hpp>

int UI_LIST::Index(UI_ELEMENT const *element);

Remarks This routine returns the index value of the specified element. If no
element matches the specified element, -1 is returned.

» returnValue,, gives the index of the element in the UI_LIST object.
List element indexes are zero based (i.e., the first element in a list
has an index value of 0). If element is not found in the UI_LIST
object, a -1 is returned.

 element,, is a pointer to the list element to find. This element must
either be UI_ELEMENT or derived from the UI_ELEMENT class.

Example #include <ui_gen.hpp>
%xampleFunct10n1()

UI LIST list;
ITEM *item3 new ITEM("Item3");
ITEM *itemi new ITEM("Item1");
ITEM *item2 new ITEM("Item2");

list + item3 + item1 + item2;

list.Sort();

// Get the index number of an element in a sorted list.

ggut << "Item1 is item #" << list.Index(item1) + 1 << "in the
st.”;

}
%xampleFunctionz()

UI_LIST list;
UI_ELEMENT *elementl = new UI_ELEMENT;

}/ See if element1 is in the list.

if (list.Index(element1) != -1)

" cout << "Element! was found in the list.";
else

cout << "Element1 was NOT found in the list.";

146 Zinc Interface Library — Programmer’s Reference

UI_LIST::Sort

Syntax

Remarks

Example

#include <ui_gen.hpp>

void UI_LIST::Sort(void);

This routine sorts the UI_LIST object according to the class compare
function (specified in the class constructor). If the list has no compare
function, no sort occurs.

#include <ui_gen.hpp>
ExampleFunction1()
{

UI LIST list;
ITEM *item3 = new ITEM("Item3");
ITEM *item1 new ITEM("Item1");
ITEM *item2 new ITEM("Item2");

list + item3 + item1 + item2;

iist.conpareFunction = ITEM: :Compare;
// Sort a list of items.
} list.Sort();

ExampleFunction2()
UI_LIST *1ist = new UI_LIST(ITEM::CompareAscending);

list
+ new ITEM("Item3")
+ new ITEM("Item2")
+ new ITEM("Item1");

}/ Sort the list according to a descending order.
list->compareFunctoin = ITEM::CompareDecending;
list->Sort();

}

UI_LIST::Subtract

Syntax

#include <ui_gen.hpp>

UI_ELEMENT *UI_LIST::Subtract(Ul_ELEMENT *element);

Chapter 17 — UI_LIST 147

Remarks This function removes an element from the UI_LIST object. This
routine does not call the destructor associated with the element.

e retumValue,, is a pointer to the next element in the list. This value
is NULL if there are no more elements after the deleted element.

e element,, is a pointer to the element to be deleted from the list.
The element class destructor is not called by UI_LIST::Subtract.

Example #include <ui_gen.hpp>
ExampleFunction1()
{

// Construct a list, then add elements to it.
UI_LIST listi;

UI_ELEMENT *element1 = new UI_ELEMENT;
list1.Add(element1);

.

}/ Delete a particular element from a list.
list1.Delete(elementl);

}
ExampleFunctionZ()

// Construct a list, then add elements to it using the

// + operator overload.

UI_LIST *1ist2 = new LIST;

*1Tst2 + new UI_ELEMENT + new UI_ELEMENT + new UI_ELEMENT;

// Manually delete each element in the list.
UI_ELEMENT *element = list2->head;
while (element)

element = list2->Delete(element);

UI_LIST::operator +

Syntax #include <ui_gen.hpp>

UI_LIST &UI_LIST::operator + (UI_ELEMENT *element);

148 Zinc Interface Library - Programmer’s Reference

Remarks This overload operator adds an element to the UI_LIST object. This
operator overload is equivalent to calling the UI_LIST::Add routine,
except that it allows the chaining of list element additions to the
UI_LIST object.

o returnValue,, is the UL_LIST reference. Returning the reference to
the UI_LIST object allows chaining of the UI_LIST::operator+
overload operator.

e element,, is a pointer to the UI_ELEMENT class element or the
object derived from the UI_ELEMENT base class that is to be
added to the list.

Example #include <ui_gen.hpp>
%xampleFunction1()

UI_LIST list;

UI_ELEMENT *elementi = new UI_ELEMENT;
UI_ELEMENT *element2 = new UI_ELEMENT;

// Add elements to the list using their pointers.
list + elementl + element2;

}
ExampleFunction2()
{
UI_LIST *1list = new UI_LIST;
// Add constructed elements directly to the list.
*1ist + new UI_ELEMENT;
*1ist + new UI_ELEMENT + new UI_ELEMENT;
}

UI_LIST::operator -

Syntax #include <ui_gen.hpp>
UI_LIST &UI_LIST::operator — (UL_ELEMENT *element);
Remarks This overload operator deletes an element from the UI_LIST object.
This operator overload is equivalent to calling the UI_LIST::Delete

routine, except that it allows the chaining of list element deletions from
the UI_LIST object.

Chapter 17 — UI_LIST 149

e returnValue,, is the UI_LIST reference. Returning the reference to
the list allows chaining of the UI_LIST:operator— overload
operator.

» element,, is a pointer to the Ul_ELEMENT class element or the
object derived from the UI_ELEMENT base class that is to be
removed from the list.

Example #include <ui_gen.hpp>
ExampleFunctioni()

UI_LIST list;
UI_ELEMENT element[10],
for (int 1 = 0; 1 < 10; i++)
list + element[i]; // Add the element to the list.

}/ Remove the array of elements from the list.
for (1 =0; 1 < 10; i++)
list - element[i]; // Remove the element from the list.

}
ExampleFunction2()
{
UI_LIST *1ist = new UI_LIST;
*1Ist + new UI_ELEMENT;
’list + new UI ELEMENT + new UI_ELEMENT;
}/ Manually remove all the elements from a list.
UI_ELEMENT t_element;
for (UI_ELEMENT element = list->head; element; element =
} _element)
t_element = element->next;
1ist - element; // Remove the element from the list.
delete element;
}

150 Zinc Interface Library — Programmer’s Reference

CHAPTER 18 - Ul_MS_MOUSE

Overview

Mouse event
information

The UI_MS_MOUSE class is used to get event information from a
mouse device. This class implements an interrupt level mouse device
that conforms to the operating protocol specified by the Microsoft
mouse driver. The public members of the Ul_MS_MOUSE class
(declared in UI_EVL.HPP) are:

class UI_MS_MOUSE : public UI_DEVICE

{

public:
UI_MS_MOUSE (USHORT initialState = D_VIEW);
virtual “UI_MS_MOUSE (void);

The mouse device provides the following event information (declared in
UI_EVT.HPP) when a mouse event is retrieved using the UI_EVENT _-
MANAGER::Get function:

struct UI_POSITION

int column; // The mouse column position.
int line; // The mouse line position.

b
struct UI_EVENT
{

int type; // The type of event (E_MOUSE).
USHORT rawCode; // The mouse’s shift and pressed state.
union

UI_KEY key;

UI_REGION region;
UI_POSITION position; // The mouse position.
void *data;

b
b
e type is the event type. The mouse device always generates an
E_MOUSE type event.

e rawCode is the keyboard’s shift state and mouse’s button states.
The raw code may be one or more of the following flags (declared
in UI_EVL.HPP):

M_LEFT—The left mouse button is pressed.

M_LEFT_CHANGE—The left mouse button state has changed.
If the M_LEFT_CHANGE and M_LEFT flags are set then the

Chapter 18 — UI_MS_MOUSE 151

left button has just been pressed. Otherwise, the left button
has just been released.

M_MIDDLE—The middle mouse button is pressed. (This flag
will only be set when a three-button mouse is in use.)

M_MIDDLE_CHANGE—The middle mouse button state has
changed. If the M_MIDDLE_CHANGE and M_MIDDLE flags
are set, then the middle button has just been pressed.
Otherwise, the middle button has just been released. (This flag
will only be set when a three-button mouse is in use.)
M_RIGHT—The right mouse button is pressed.
M_RIGHT_CHANGE—The right mouse button state has
changed. If the M_RIGHT_CHANGE and M_RIGHT flags
are set then the right button has just been pressed. Otherwise,
the right button has just been released.
S_ALT—The <Alt> key is pressed.
S_CAPS_LOCK—The <Caps-Lock> key is on.
S_CTRL—The <Cirl> key is pressed.
S_INSERT—The <Ins> key is on.
S_LEFT_SHIFT—The <Left-Shift> key is pressed.
S_NUM_LOCK—The <Num-Lock> key is on.
S_RIGHT_SHIFT—The <Right-Shift> key is pressed.
S_SCROLL_LOCK—The <Scroll-Lock> key is on.

* position.column is column (horizontal) position of the mouse on the

screen. In graphics mode, this value is given in pixel coordinates.
In text mode, this value is given in character coordinates.

 position.line is line (vertical) position of the mouse on the screen.
In graphics mode, this value is given in pixel coordinates. In text
mode, this value is given in character coordinates.

152 Zinc Interface Library — Programmer’s Reference

See also

The example file XMSMOUSE.CPP, which gives a complete example of
the UI_MS_MOUSE class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the operation of device classes within the event
manager.

“Chapter 1—UI_BIOS_KEYBOARD?” of this manual, which describes
an additional device derived from the UI_DEVICE class.

“Chapter 2—UI_CURSOR” of this manual, which describes an
additional device derived from the UI_DEVICE class.

“Chapter 4—UI_DEVICE” of this manual, which describes the base
class from which the UL_MS_MOUSE class is derived.

“Chapter 13—UI_EVENT_MANAGER” of this manual, which
describes the operation (e.g., addition, subtraction, state change) of
device classes within the event manager.

UI_MS_MOUSE::UI_MS_MOUSE

Syntax

Remarks

#include <ui_evt.hpp>
UI_MS_MOUSE::UI_MS_MOUSE(
USHORT initialState = DM_VIEW);

This constructor returns a pointer to a new Ul_MS_MOUSE class
object. It should be called after the following class constructors have
been called:
1—UI_DOS_BGI_DISPLAY or UI_DOS_TEXT_ DISPLAY, then
2—UI_EVENT_MANAGER

NOTE: If the mouse device is attached to the event manager, it will
automatically be destroyed when the event manager is destroyed.

Chapter 18 — Ul_MS_MOUSE 153

154

Example

e initialState,, is the initial state of the mouse device. The mouse
device may be set to one of the following states (declared in
UI_EVT.HPP):

D_OFF—Initializes the mouse but disables events. If the
mouse is set to the D_OFF state, mouse interrupt events are
not placed in the event queue.

D_ON—Initializes the mouse to feed event information to the
event queue. (This is the default value if no argument is
provided.)

NOTE: The UI_MS_MOUSE constructor automatically activates the
mouse cursor. This cursor is not affected by the state of the device.
The only way to remove a mouse cursor is by hiding it (using the
UI_EVENT_MANAGER::DevicesHide function or by calling its
destructor).

#include <ui_evt.hpp>
?xampleFunct10n1()

UI_DOS_TEXT_DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

// Initialize the mouse.
UI_MS_MOUSE *mouse = new UI_MS_MOUSE;
eventManager + mouse;

}
%xampleFunctionZ()

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

Zinc Interface Library — Programmer’s Reference

UI_MS_MOUSE:: ~ Ul_MS_MOUSE

Syntax #include <ui_evt.hpp>

virtual UI_MS_MOUSE:: ~ UI_MS_MOUSE(void);

Remarks This virtual destructor destroys the class information associated with the
UI_MS_MOUSE object and closes the interrupt associated with the
mouse. Care should be taken to only destroy a mouse device that is not
attached to the event manager.

Example #include <ui_evt.hpp>
%xampleFunction1()

UI_DOS TEXT DISPLAY display;
UI_EVENT_MANAGER eventManager (100, &display);

// Initialize the mouse.
UI_MS_MOUSE *mouse = new UI_MS_MOUSE;
eventManager + mouse;

// Remove the mouse from the event manager, then call its

// destructor. We could also have left the mouse alone. Its
// destructor would automatically be called when the event

// manager destructor was called.

eventManager - mouse;

delete mouse;

}
ExampleFunction2()
{

// Attach the devices directly to the event manager.
UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER(100, display);
*eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

}/ This automatically calls the cursor destructor.
delete eventManager;
delete display;

Chapter 18 — UI_MS_MOUSE 155

156 Zinc Interface Library - Programmer’s Reference

CHAPTER 19 - UI_PALETTE

Overview The UI_PALETTE structure is used by the Zinc Interface Library class
objects for color information. The UI_PALETTE structure (declared
in UL_EVL.HPP) has the following fields:

#define attrib(foreground, background) \
(((background) << 4) + (foreground))

struct UI_PALETTE
{

/* Text mode */

UCHAR fillCharacter;
UCHAR colorAttribute;
UCHAR monoAttribute;

/* Graphics mode */
UCHAR fillPattern;
UCHAR color;

UCHAR bwColor;

UCHAR grayScaleColor;

b

e fillCharacter is the text fill character. It is used to fill all blank
space on the window object when the screen display is created in
text mode.

o colorAttribute are the attributes of the foreground and background
colors respectively for color text display mode.

o monoAttributes are the attributes of the foreground and background
colors respectively for monochrome text display mode.

o fillPattern is the graphics fill pattern. It is used when the screen
display is created in graphics mode to fill all blank space on the
window object.

o color are the attributes of the foreground and background colors
respectively for VGA, VGA monochrome and EGA graphics display
modes.

o bwColor are the attributes of the foreground and background colors
respectively for CGA and Hercules graphics display modes.

o grayScaleColor are the attributes of the foreground and background
colors respectively for EGA monochrome graphics display mode.

Chapter 19 — Ul_PALETTE 157

Global
variables

See also

158

UI_PALETTE *_backgroundPalette is a pointer to the background
palette. The external declaration for this variable is contained in
UI_DSPHPP. The actual declaration of this variable is contained in
G_PBACK.CPP.

The example file XPALETTE.CPP, which gives a complete example of
the UI_PALETTE structure.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the use of events within the Zinc Interface Library.

“Chapter 6—UI_DOS_BGI_DISPLAY” of this manual, which is a class
that uses the UI_PALETTE structure in many of its member functions.

“Chapter 6—UI_DOS_TEXT _DISPLAY” of this manual, which is a

class that uses the UI_PALETTE structure in many of its member
functions.

Zinc Interface Library — Programmer’s Reference

CHAPTER 20 - UI_PALETTE_MAP

Overview

Global
variables

See also

The UI_PALETTE_MAP structure is used by the Zinc Interface Library
class objects for color map information. The UI_PALETTE_MAP
structure (declared in UI_MAPHPP) has the following fields:

typedef struct UI_PALETTE_MAP_STRUCT

int windowlD;

int logicalValue;

UI_PALETTE palette;
} UI_PALETTE_MAP;

UI_PALETTE_MAP *_errorPaletteMapTable is a pointer to the error
palette table. This is the palette table used by the error system. The
external declaration for this variable is contained in U_ MAPHPP. The
actual declaration of this variable is contained in G_PERROR.CPP.

UI_PALETTE_MAP *_helpPaletteMapTable is a pointer to the help
palette table. This is the palette table used by the help system. The
external declaration for this variable is contained in U_MAPHPP. The
actual declaration of this variable is contained in G_PHELP.CPP.

UI_PALETTE_MAP *_normalPaletteMapTable is a pointer to the
normal palette table. This is the default palette table used by all
window objects. The external declaration for this variable is contained
in UI_MAPHPP. The actual declaration of this variable is contained in
G_PNORM.CPP.

The example file XPALETTE.CPP, which gives a complete example of
the UI_PALETTE_MAP structure.

“Chapter 5—Default Palette Mapping” of the Programmer’s Guide,
which describes the default palette map table used by the Zinc Interface
Library.

Chapter 20 — Ul_PALETTE_MAP 159

160

Zinc Interface Library — Programmer’s Reference

CHAPTER 21 - Ul_POSITION

Overview The UI_POSITION structure is used to store positional information
(e.g., mouse screen positions) passed through the library in the
UI_EVENT structure. The UI_POSITION structure (declared in
UI_GEN.HPP) has the following fields:

struct UI_POSITION

int column;
int line;

b
e column is a vertical position indicator.
 line is a horizontal position indicator.
See also “Chapter 12—UI_EVENT” of this manual, which describes a higher-
level structure that uses the UI_POSITION structure in a union field.
“Chapter 12—UI_MS_MOUSE” of this manual, which describes a class

object that uses the UI_POSITION structure to indicate its position on
the screen.

Chapter 21 — Ul_POSITION 161

162 Zinc Interface Library - Programmer’s Reference

CHAPTER 22 - UI_REGION

Overview

See also

The UI_REGION structure is used to store rectangular information
(e.g., window object regions) int the library. The UI_REGION
structure (declared in UI_GEN.HPP) has the following fields:

struct UI_REGION

int left;
int top;
int right;
int bottom;

b

e left and top is the starting position of the region.

e right and bottom is the ending position of the region.

“Chapter 12—UI_EVENT” of this manual, which describes a higher-
level structure that uses the Ul_REGION structure in a union field.

“Chapter 6—UI_DOS_BGI_DISPLAY” of this manual, which describes
a class object that receives UI_REGION structures in many of its
member functions.

“Chapter 7—UI_DOS_TEXT_DISPLAY” of this manual, which
describes a class object that receives UI_REGION structures in many
of its member functions.

“Chapter 6—UI_WINDOW_OBIJECT” of this manual, which describes
a class object that has Ul_REGION member variables.

Chapter 22 — Ul_REGION 163

164 Zinc Interface Library — Programmer’s Reference

CHAPTER 23 - Ul_TIME

Overview The UI_TIME class is a lower-level class used to store hour, minute,
second and hundredths of second time information. It is not a window
object. (See “Chapter 44—UIW_TIME?” of this manual for information
about the time window object.) The public members of the UI_TIME
class (declared on UI_GEN.HPP) are:

class UI_TIME

{
public:
UI_TIME(void);
UI_TIME(int packedTime);
UI_TIME(int hour, int minute, int second = 0,
int hundredth = 0);
UI_TIME(const char *string, USHORT tmFlags = TMF_NO_FLAGS);
virtual “UI_TIME(void);

void Export(void);

void Export(int packedTime);

void Export(int *hour, int *minute, int *second,
int *hundredth);

void Export(char *string, USHORT tmFlags);

void Import(void);

int Import(int packedTime);

int Import(int hour, int minute, int second = 0,
int hundredth = 0);

int Import(const char *string, USHORT tmFlags);

void NamesSet(char *am = NULL, char *pm = NULL);

int operator > (UI_TIME& rightOperand);
int operator < (UI_TIME& rightOperand);

} int operator == (UT_TIME& rightOperand);
)

See also The example file XTIME.CPP, which gives a complete example of the
UI_TIME class.

“Chapter 3—UI_DATE” of this manual, which describes a similar low-
level class that maintains date information.

“Chapter 44—UIW_TIME” of this manual, which describes a high-level
window object that uses the UI_TIME class to store display information.

Chapter 23 — UI_TIME 165

UL_TIME:Ul_TIME

166

Syntax

Remarks

#include <ui_gen.hpp>

UI_TIME(void);

or

UIL_TIME(int packedTime);

or

UI_TIME(int hour, int minute, int second, int hundredth = 0);

or

UI_TIME(const char *string,

USHORT tmFlags = TMF_NO_FLAGS);

These overloaded functions return a pointer to a new UI_TIME class
object.

The first overloaded constructor takes no arguments. It sets the time
information according to the system’s time.

The second overloaded constructor uses a packed integer argument to
specify the default time.

packedTime,, is a packed representation of the time (whose format
is the same as the MS-DOS file times). This argument is packed
according to the following bit pattern:

bits 0-4 specify the seconds divided by 2 (e.g., a value of S
means 10 seconds),

bits 5-10 specify the minutes (0 through 59), and

bits 11-15 specify the hours (0 through 59).

The third overloaded constructor uses integer arguments to specify the
default time.

hour,, is the hour. This argument must be in a range from 0 to 23.

minute;, is the minute. This argument must be in a range from 0 to
59,

second,, is the second. This argument must be in a range from 0 to
59.

Zinc Interface Library — Programmer’s Reference

o hundredth,, is the hundredths of second. This argument must be in
a range from O to 99.

The fourth overloaded constructor uses an ascii string argument to
specify the default time.

e string, is an ascii string that contains the time information.

e tmFlags,, gives information on how to interpret the time string. The
following flags (declared in UI_GEN.HPP) override the country
dependant information (supplied by all DOS based systems):

TMF_NO_FLAGS—Does not associate any special flags with
the UI_TIME class object. In this case, the ascii time will be
interpreted using the default country information. This flag
should not be used in conjunction with any other TMF flag.

TMF_NO_HOURS—Does not interpret an hour value for the
UI_TIME object. For example, if time were "12:15" and the
TMF_NO_HOURS were set, the value “12” would be
interpreted as the minutes and “15” would be interpreted as the
seconds.

TMF_NO_MINUTES—Does not interpret a minute value for
the UI_TIME object. For example, if time were "12:15pm" and
the TMF_NO_MINUTES were set, the value “12” would be
interpreted as a seconds and the value “15” would be
interpreted as hundredths of seconds.

TMF_SYSTEM—Fills a blank time with the system time. For
example, if a blank ascii time value were specified by the
programmer and the TMF_SYSTEM flag were set, then the
time would be set to the current system time (e.g., "1:10pm").

Example #include <ui_gen.hpp>
ExampleFunctioni()

UI_TIME timel; // System date initialization.
UI_TIME time2(12, 0, 0); // Integer initialization.
UI_TIME *time3 = // String initialization.

new UI_TIME("12:00:00pm");

Chapter 23 — Ul_TIME 167

UL_TIME:: ~ UI_TIME

Syntax #include <ui_gen.hpp>
virtual UI_TIME:: ~ UI_TIME(void);
Remarks This virtual destructor destroys the class information associated with the
UI_TIME object.
Example #include <ui_gen.hpp>
%xampleFunction1()
UI_TIME time1; // System date initialization.
UI_TIME time2(12, 0, 0); // Integer initialization.
UI_TIME *time3 = // String initialization.
new UI_TIME("12:00:00pm");
delete time3;
// The destructor for timel and time2 is automatically called
} // when the scope of this function ends.
UL_TIME::Export
Syntax #include <ui_gen.hpp>
void UI_TIME::Export(void);
or
void UI_TIME::Export(int packedTime);
or
void UI_TIME::Export(int *hour, int *minute, int *second,
int *hundredth = 0);
or
void UI_TIME::Export(char *string, USHORT imFlags);
Remarks The first overloaded function sets the system time according to the

168

UI_TIME object’s time information. This function only works on
environments where time information can be set.

Zinc Interface Library — Programmer’s Reference

The second overloaded function returns time information through a
single packed integer argument.

» packedTime,,,, is a packed representation of the time (whose
format is the same as MS-DOS file times). This argument is packed
according to the following bit pattern:

bits 0-4 specify the seconds divided by 2 (e.g., a value of 5
means 10 seconds),

‘bits 5-10 specify the minutes (0 through 59), and

bits 11-15 specify the hours (0 through 59).

The third overloaded function returns time information through the four
integer arguments.

e hour,,,, is a pointer to the hour. If this argument is NULL, no
hour information is returned. Otherwise, this argument will always
be set within a range from 0 to 23.

* minute,,,, is a pointer to the minutes. If this argument is NULL,
no minute information is returned. Otherwise, this argument will
always be set within a range from 0 to 59.

e second,,,, is a pointer to the seconds. If this argument is NULL,
no second information is returned. Otherwise, this argument will
always be set within a range from 0 to 59.

* hundredth,,,, is a pointer to the hundredths. If this argument is
NULL, no hundredths information is returned. Otherwise, this
argument will always be set within a range from 0 to 59.

The fourth overloaded function returns the time information through
the string argument.

* SIring,., is a pointer to a string that gets the ascii formatted time.
This string must be long enough to hold the string (including the
trailing NULL byte).

Chapter 23 — Ul_TIME 169

e tmFlags, gives formatting information about the return ascii time.
The following flags (declared in UI_GEN.HPP) override the country
dependant information (supplied by all DOS based systems):

TMF_COLON_SEPARATOR—Separates each time variable
with a colon. Some example times with the TMF_COLON -
SEPARATOR flag set are: "12:00," "13:00:00" and "12:00 a.m."

TMF_HUNDREDTHS—Includes the hundredths value in the
time. (By default the hundredths value is not included.)

TMF_LOWER_CASE—Converts the time to lower-case. Some
example times with the TMF_LOWER_CASE flag set are:
"12:00 p.m." and "1:00 a.m."

TMF_NO_FLAGS—Does not associate any special flags with
the format function. In this case, the ascii time is formatted
using the default country information. This flag should not be
used in conjunction with any other TMF flag.

TMF_NO_SEPARATOR—Does not use any separator
characters to delimit the time values. Some example times with
the TMF_NO_SEPARATOR flag set are: "1200" and "130000."

TMF_SECONDS—Includes the seconds value in the time. (By
default the seconds value is not included.)

TMF_TWELVE_HOUR—Forces the time to be formatted using
a 12 hour clock, regardless of the default country information.
Some example times with the TMF_TWELVE_HOUR flag set
are: "12:00 a.m.,” "1:00 p.m." and "5:00 p.m."

TMF_TWENTY_FOUR_HOUR—Forces the time to be
formatted using a 24 hour clock, regardless of the default
country information. Some example times with the TMF -
TWENTY_FOUR_HOUR flag set are: "12:00," "13:00" and
"17:00."

TMF_UPPER_CASE—Converts the time to upper-case. Some

example times with the TMF_UPPER_CASE flag set are:
"12:00 PM." and "1:00 A.M."

170 Zinc Interface Library — Programmer’s Reference

Example

TMF_ZERO_FILL—Forces the hour, minute and second values
to be zero filled when their values are less than 10. Some
example times with the TMF_ZERO_FILL flag set are: "01:10
a.m.," "13:05:03" and "01:01 p.m."

#include <ui_gen.hpp>
ExampleFunction1()
{
UI_TIME time; // Use a system time.

// Print out the time in various forms.

int packedTime;

time. Export(&packedTime),

printf("Packed time value: %x\n", packedTime);

int hour, minute, second;

time. Export(&hour &minute &second) ;

printf("Integer time value: hour-%d, minute-%d, second-%d\n"
hour, minute, second);

char *asciiTime[128];
time. Export(asciiTime, 128, TMF_NO_FLAGS) ;
printf("Ascii time value: %s , asciiTime);

// The destructor for time is automatically called when the
// scope of this function ends.

UI_TIME::Import

Syntax

Remarks

#include <ui_gen.hpp>

int UI_TIME::Import(void);
or
int UI_TIME::Import(int packedTime);
or
int UI_TIME::Import(int hour, int minute, int second,
int hundredth = 0);
or
int UI_TIME::Import(const char *string, USHORT tmFlags);

The first overloaded function sets the time information according to the
system time.

The second overloaded function sets the time information through a
single packed integer argument.

Chapter 23 — UI_TIME 171

172

returnValue,, is 0 if the packed time value was successfully
imported. Otherwise, the return value is -1.

packedTime,, is a packed representation of the time (whose format
is the same as the MS-DOS file times). This argument is packed
according to the following bit pattern:

bits 0-4 specify the seconds divided by 2 (e.g., a value of §
means 10 seconds),

bits 5-10 specify the minutes (0 through 59), and

bits 11-15 specify the hours (0 through 59).

The third overloaded function sets the time information according to
specified integer arguments.

returnValue,,,, is 0 (TMI_OK) if the time values were successfully
imported. Otherwise, the return value is TMI_INVALID.

hour,, is the hour. This argument must be in a range from 0 to 23.

minute,, is the minute. This argument must be in a range from 0 to
59.

second,, is the second. This argument must be in a range from 0 to
59.

hundredth,, is the hundredths of second. This argument must be in
a range from 0 to 99.

The fourth overloaded function sets the time information according to
an ascii string.

retumValue,,,, is 0 (TMI_OK) if the ascii string parsed to a valid
date. Otherwise, one of the following error codes (declared in
UI_GEN.HPP) is returned:

TMI_INVALID—The hour, minute, second or hundredths value
was out of range.

TMI_VALUE_MISSING—The time string is blank and the
TMF_SYSTEM flag is not set.

Zinc Interface Library - Programmer’s Reference

s string, is a pointer to the ascii time.

o tmFlags,, gives information on how to interpret the time string. The
following flags (declared in UI_GEN.HPP) override the country
dependant information (supplied by all DOS based systems):

TMF_NO_FLAGS—Does not associate any special flags with
the UI_TIME class object. In this case, the ascii time is
interpreted using the default country information. This flag
should not be used in conjunction with any other TMF flag.

TMF_NO_HOURS—Does not interpret an hour value for the
UIL_TIME object. For example, if time were "12:15" and the
TMF_NO_HOURS were set, the value “12” would be
interpreted as the minutes and “15” would be interpreted as the
seconds.

TMF_NO_MINUTES—Does not interpret a minute value for
the UI_TIME object. For example, if time were "12:15pm" and
the TMF_NO_MINUTES were set, the value “12” would be
interpreted as the seconds and the value “15” would be
interpreted as the hundredths of seconds.

TM_SYSTEM—Fills a blank time with the system time. For
example, if a blank ascii time value were entered by the end-
user and the TMF_SYSTEM flag were set, then the time would
be set to the current system time (e.g., "1:10pm").

Example #include <ui_gen.hpp>
%xampleFunction1()

UI_TIME time; // Initialize a system time.

// Import the time in various forms, then print out
// the results.

char asciiTime[128];

time.Import (1990, 1, 1);

time.Export(asciiTime, DTF_NO_FLAGS) ;

printf("Ascii time value: %s\n", asciiTime);

time.Import(*1-1-1990");
time.Export(asciiTime, TMF_TWENTY_FOUR_HOUR) ;
printf("Ascii time value: %s\n", asciiTime);

// The destructor for time is automatically called when the |
// scope of this function ends. |

Chapter 23 — Ul_TIME 173 |

UI_TIME::NamesSet

Syntax #include <ui_gen.hpp>

void UI_TIME::NamesSet(const char *am = NULL,
const char *pm = NULL);

Remarks This static function is used to re-define the ascii ante- and post-meridian
name values. The default ante- and post-meridian values are: “a.m.”
and “p.m.”

e am, is a pointer to the new ante-meridian value. This value must
be allocated by the programmer and remain active throughout
program execution. If this argument is NULL, am is reset to point
to the default ante-meridian value (i.e., “a.m.”).

e pmy, is a pointer to the new post-meridian value. This value must
be allocated by the programmer and remain active throughout
program execution. If this argument is NULL, pm is reset to point
to the default post-meridian value (i.e., “a.m.”).

Example #include <ui_gen.hpp>
ExampleFunctioni ()

// Redefine the time name values.
UI_TIME: :NamesSet("AM", "PM");

i // Restore the time name values.
i ; UI_TIME::NamesSet (NULL, NULL);
i

Ul_TIME::operator >

Syntax #include <ui_gen.hpp>

int UI_TIME::operator > (UI_TIME& rightOperand)

Remarks This operator overload determines whether the UI_TIME object is
chronologically greater than the time specified by rightOperand.

174 Zinc Interface Library - Programmer’s Reference

o returmValue , is TRUE if the Ul_TIME object is chronologically
greater than rightOperand. Otherwise, the return value is FALSE.

e rightOperand, is the UI_TIME object against which to compare.

Example #include <ui_gen.hpp>
ExampleFunction1()
{

UI_TIME currentTime; // Initialize a system time class.
UI_TIME beginLunch("12:00 pm");
UI_TIME endLunch("1:00 pm");

// Check the times.

if (currentTime < beginLunch)
printf("It’'s morning.\n");

else if (currentTime == endLunch || currentTime > endLunch)
printf(*It’s afternoon.\n");

else
printf("Gone to lunch.\n")

Ul_TIME::operator <

Syntax #include <ui_gen.hpp>
int UI_TIME::operator < (UI_TIME& rightOperand)
Remarks This operator overload determines whether the UI_TIME object is
chronologically less than the time specified by rightOperand.

o returnValue,, is TRUE if the UI_TIME object is chronologically
less than rightOperand. Otherwise, the return value is FALSE.

e rightOperand,, is the UI_TIME object against which to compare.

Example #include <ui_gen.hpp>

ExampleFunctioni ()
UI_TIME currentTime; // Initialize a system time class.

UI_TIME beginLunch(*12:00 pm*);
UI_TIME endLunch("1:00 pm*");

Chapter 23 — Ul_TIME 175

// Check the times.

if (currentTime < beginLunch)
printf("It’s morning.\n");

else if (currentTime == endLunch || currentTime > endLunch)
printf("It’s afternoon.\n");

printf("Gone to lunch.\n")

UI_TIME::operator ==

Syntax

Remarks

Example

176

#include <ui_gen.hpp>

int UI_TIME::operator == (UI_TIME& rightOperand)

This operator overload determines whether the UI_TIME object is
chronologically equal to the time specified by rightOperand.

» remumValue,, is TRUE if the UI_TIME object is chronologically
equal to rightOperand. Otherwise, the return value is FALSE.

» rightOperand,, is the UI_TIME object against which to compare.

#include <ui_gen.hpp>
ExampleFunctioni ()
{

UI_TIME currentTime; // Initialize a system time class.
UI_TIME beginLunch(*12:00 pm");
UI_TIME endLunch("1:00 pm");

// Check the times.

if (currentTime < beginLunch)
printf(*It’s morning.\n");

else if (currentTime == endLunch || currentTime > endLunch)
printf("It’s afternoon.\n");

se
printf("Gone to lunch.\n")

Zinc Interface Library - Programmer’s Reference

CHAPTER 24 - UI_WINDOW_MANAGER

Overview The UI_WINDOW_MANAGER class serves as the control unit for
windows that are attached to the screen display. The graphic illustration
below shows the conceptual operation of the window manager within
the library:

Lzmc INTERFACE LIBRARY]

| EVENT MANAGER |

I P

Py 9
: : AR,
C EVENT QUEUE]
-}
[SUPPORT RESOURCES]

L I o
SNEELEETY
L] I

The controlling portion of the UI_WINDOW_MANAGER class
contains a list of all windows attached to the screen. These windows
receive message information from the window manager during an
application program. This information is routed to each window
according to its position on the screen.

The public members of the UL WINDOW_MANAGER class (declared
in UI_WIN.HPP) are:

class UI_WINDOW_MANAGER

{
public:
UI_WINDOW_MANAGER (UI_DISPLAY *display,
UI_EVENT MANAGER *eventManager);
virtual ~“UI_WINDOW_MANAGER (void);

void Add(UI_WINDOW_OBJECT *object);
int Event(const UI_EVENT &event);
void Subtract(UI_WINDOW_OBJECT *object);

UI_WINDOW_MANAGER &operator + (void *object);

UI_WINDOW_MANAGER &operator - (void *object);
};

Chapter 24 - Ul_WINDOW_MANAGER 177

See also The example file XWINMGR.CPP, which gives a complete example of
the UI_WINDOW_MANAGER class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
describes the operation of the window manager in the Zinc Interface
Library.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class recognized by the window manager.

UI_WINDOW_MANAGER::Ul_WINDOW_MANAGER

Syntax #include <ui_win.hpp>

UI_WINDOW_MANAGER::UI_WINDOW_MANAGER(
UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager);

Remarks This constructor returns a pointer to a new Ul_WINDOW_MANAGER
class object. It should be called after the following class constructors
have been called:

1—UI_DOS_BGI_DISPLAY or UI_DOS_TEXT_DISPLAY, then
2—UI_EVENT_MANAGER

e display, is a pointer to the screen display. This pointer is used by
window objects when they display their information to the screen
(e.g., the UIW_TEXT class object uses the screen display to show
its text information).

e eventManager, is a pointer to the event manager. This pointer is
used by window objects to send private communication to the
window manager, or when input device information needs to be
changed (e.g., the UIW_TEXT class object sends the mouse device
messages to change its cursor state to the edit figure ‘|’).

178 Zinc Interface Library — Programmer’s Reference

Example #include <ui_win.hpp>
ExampleFunction1()

// Initialize the system.

UI_DOS TEXT DISPLAY display;

UI_EVENT_MANAGER eventManager (100, display);
UI_WINDOW_MANAGER windowManager (&display, &eventManager);

}
?xampleFunctionZ()

// Initialize the system.
UI_DOS TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT MANAGER *eventManager =
new UI_EVENT_MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);

UI_WINDOW_MANAGER:: ~ Ul_WINDOW_MANAGER

Syntax #include <ui_win.hpp>

virtual UL WINDOW_MANAGER:: ~ Ul WINDOW_MANAGER(
void);

Remarks This virtual destructor destroys the class information associated with the
UI_ WINDOW_MANAGER object and destroys the class information
of any window object that remains attached to the window manager.

Example #include <ui_win.hpp>
%xampleFunctionI()

UI_DOS_TEXT_DISPLAY display;
UI_EVENT _MANAGER eventManager (100, display);
UI_WINDOW_MANAGER windowManager (&display, &eventManager);

// The windowManager, eventManager and display are
// automatically destroyed when the scope of this
// routine ends.

Chapter 24 - Ul_WINDOW_MANAGER 179

%xampleFunctionZ()

UI_DOS_TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

// Restore the system. Managers need to be destroyed
// in opposite order.

delete windowManager;

delete eventManager;

delete display;

UI_WINDOW_MANAGER::Add

Syntax #include <ui_win.hpp>

void UI_WINDOW_MANAGER::Add(
UI_WINDOW_OBJECT *object);

Remarks This routine adds a new window object to the window manager. The
window object must be a class derived from the Ul_WINDOW -
OBJECT base class. This routine adds the window object to the front
of the window manager’s list of objects. This means all new events will
be sent to this object until an event is received that changes the window
object flow. Once a window object is attached to the window manager,
it is created and painted to the screen. It is also available to receive
input information when the UI_WINDOW_MANAGER::Event function
is called. The last object to be attached using the UI_WINDOW_-
MANAGER::Add routine becomes the current window until an
operation is performed that changes its position (e.g., a mouse click on
a different window).

* object, is a pointer to the new UI_WINDOW_OBJECT class object
to be added to the window manager’s window list.

180 Zinc Interface Library — Programmer’s Reference

Example #include <ui_win.hpp>
ExampleFunctioni()
{

UI_DOS_TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager) ;

// Add a simple window to the screen.
UIW WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER) ;
windowManager->Add(window) ;

Ul_WINDOW_MANAGER::Event

Syntax #include <ui_win.hpp>

int UL WINDOW_MANAGER::Event(const UI_EVENT &event);

Remarks This routine transfers event information received from the event
manager to the window manager. All user input and system information
is put in the event manager’s input queue. The event is received by
calling the UI_EVENT_MANAGER::Get function. When an event is
received, it is sent to the window manager for processing. The
UI_WINDOW_MANAGER::Event function determines to which window
and object the event should go. For example, the keyboard event
E_KEY is processed to the current window object. System events,
however, may be processed in different manners.

o returnValue,, is the type of action that the event manager used to
process the event passed to it. Normally this is the same value that
is provided in the event.type variable. On occasion, however, this

|
Chapter 24 — Ul_WINDOW_MANAGER 181 {‘

182

return code will have significant meaning. The following return codes
(declared in UI_MAPHPP and UI_EVT.HPP) should be handled in a
different manner:

L_EXIT—The window manager received an event that either
mapped to the L_EXIT command, or an action was performed
that caused the window manager to generate the L_EXIT
command. If this command is received by the programmer,
program execution should be discontinued.

L_HELP—If this message is sent by the programmer to the
window manager, help will be displayed about the application
program. Otherwise, this message is received by the
programmer, indicating help has been presented to the end-
user.

S_CANCEL—The window manager received an event by the
end-user that was a request to cancel the information in the
current window. The current window can be obtained by calling
the UI_WINDOW_MANAGER::First function.

S_CONTINUE—A message sent by a programmer specified
procedure that requires a lot of processor time but wants to
check the status of the event queue or give time to other device
objects. If this message is sent to the event manager, the next
event received by the window object will be the S_CONTINUE
message.

S_ERROR—The window manager detected an error while
performing an operation on the last event.

S_NO_OBJECT—There are no objects in the window manager.
This message is sent back to the programmer whenever the
message is object specific and no object is attached to the
window manager.

S_REDISPLAY—Re-displays the screen display. Sending this

message causes the window manager to clear the screen display
and repaint all the windows attached to the display.

Zinc Interface Library — Programmer’s Reference

Example

S_UNKNOWN—The event passed to the window manager was
not recognized by the window manager or any window attached
to the screen display.

e event, is the event to be processed by the window manager. This
event can be generated by the programmer or may be received from
the event manager using the UI_EVENT_MANAGER::Get routine.

#include <ui_win.hpp>
ExampleFunction1()
{

UI_DOS TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_MANAGER(100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

}/ Get events until the L_EXIT logical key is entered.
UI_EVENT event;
do

eventManager->Get(event, Q_NORMAL);
event.type = windowManager->Event(event);
} while (event.type != L_EXIT);

UI_WINDOW_MANAGER::Subtract

Syntax

Remarks

#include <ui_win.hpp>

void UI_WINDOW_MANAGER::Subtract(
UI_WINDOW_OBIJECT *object);

This routine removes a window object from the window manager. Once
a window object is removed, it is removed from the screen display and
will not receive event information. This routine does not call the
destructor associated with the window object.

NOTE: If a window object (e.g, UIW_WINDOW, UIW_PULL_-
DOWN_MENU) is attached to the window manager, it is automatically
subtracted and destroyed when the window manager is destroyed.

Chapter 24 — UI_WINDOW_MANAGER 183

Example

e object, is a pointer to the window object to be removed from the
window manager’s list of window objects. Once the object is
removed, it is no longer displayed to the screen and does not
receive event information.

#include <ui_win.hpp>
ExampleFunction1()
{

UI_DOS_TEXT_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT _MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

// Add a simple window to the screen.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);
windowManager->Add(window) ;

// Clean up the system.
windowManager->Subtract (window) ;
delete windowManager;

delete eventManager;

delete display;

UI_WINDOW_MANAGER::operator +

184

Syntax

Remarks

#include <ui_win.hpp>

UI_WINDOW_MANAGER &UI_WINDOW_MANAGER::
operator + (UI_WINDOW_OBIJECT *object);

This overload operator adds a window object to the window manager.
Using this operator overload is equivalent to calling the UI_ WINDOW_-
MANAGER::Add function, except that it allows the chaining of window
elements to the window manager. If the window object is already
attached to the window manager, calling this operator overload causes
the window object to recompute and redisplay its information to the
screen display.

Zinc Interface Library — Programmer’s Reference

» returnValue,, is the UI_WINDOW_MANAGER reference.
Returning the reference to the window manager allows chaining of
the UI_WINDOW_MANAGER::operator+ overload operator.

e object,, is a pointer to the UI_WINDOW_OBJECT to be added to
the window manager’s list of window objects.

Example #include <ui_win.hpp>
%xampleFunction1()

UI_DOS TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI EVENT MANAGER (100, display);
UI_WINDOW MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

// Add a simple window to the screen.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_DESTROY) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);

+++++

*windowManager + window;

UI_WINDOW_MANAGER::operator -

Syntax #include <ui_win.hpp>

UI_WINDOW_MANAGER &UI_WINDOW_MANAGER::
operator — (UL WINDOW_OBJECT *object);

Remarks This overload operator removes a window object from the window
manager. Using this operator overload is equivalent to calling the
UI_WINDOW_MANAGER::Subtract function except that it allows the
chaining of window objects from the window manager.

Chapter 24 — UI_WINDOW_MANAGER 185

o returnValue,, is the UI_WINDOW_MANAGER reference.
Returning the reference to the window manager allows chaining of
the UI_WINDOW_MANAGER::operator— overload operator.

s object,, is a pointer to the window object to be removed from the
window manager’s list of window objects.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

UI_DOS_TEXT DISPLAY *display = new UI_DOS_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager =

new UI_EVENT MANAGER(100, display);
UI_WINDOW_MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

// Add a simple window to the screen.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_DESTROY) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER) ;

+ 4+ + o+

*windowManager + window;

;windowuanager - window;

// Clean up the system.
delete windowManager;
delete eventManager;
delete display;

186 Zinc Interface Library - Programmer’s Reference

CHAPTER 25 - Ul_WINDOW_OBJECT

Overview The UL_WINDOW_OBIJECT class is an abstract class that defines basic
information associated with window objects (e.g., borders, buttons,
menus). Since the UL WINDOW_OBIJECT class is abstract, it cannot
be used as a constructed class. Rather, derived classes, such as
UIW_BORDER, UIW_BUTTON, UIW_WINDOW must be used. The
figure below shows the window object hierarchy:

[wmoow OBJECT HIERARCHY I

UL_WINDOW_MANAGER:sss+e-| IUI_WINDOW _OBJECT]

Classes derived from the Ul_WINDOW_OBJECT base class include:
UIW_BORDER—An outlining border drawn around a window.

UIW_STRING—A field used to enter, display, or modify an ascii
string buffer.

UIW_DATE—A field used to enter, display, or modify country-
independent date information.

UIW_TEXT—A field used to enter, display, or modify a word-
wrapped text buffer.

UIW_TIME—A field used to enter, display, or modify country-
independent time information.

Chapter 25 — UI_WINDOW_OBJECT 187

188

UIW_FORMATTED_STRING—A field used to enter, display, or
modify an ascii string buffer that contains literal characters, or
characters that cannot be edited (e.g., phone numbers, social
security numbers).

UIW_BUTTON—A rectangular region of the screen that, when
selected, performs run-time operations specified by the programmer.

UIW_MAXIMIZE BUTTON—A button that, when selected,
changes the size of its parent window to occupy the entire
screen display.

UIW_MINIMIZE_BUTTON—A button that, when selected,
reduces the size of its parent window to the minimum allowed
by the window.

UIW_POP_UP_ITEM—A selectable item that is shown in the
context of a pop-up menu.

UIW_POP_UP_WINDOW—An item that, when selected,
displays additional window information (in the form of a sub-
window) to the screen display.

UIW_PULL_DOWN_ITEM—A selectable item that is shown in
the context of a pull-down menu.

UIW_SYSTEM_BUTTON—A button that, when selected, shows
general operations that can be performed on the parent
window.

UIW_ICON—A pictorial or graphical representation of a selectable
item. This object is similar to the UIW_BUTTON object, except
that the information is in graphical, rather than textual, form.

UIW_NUMBER—A field used to enter, display, or modify numeric
information. This object supports both integer values (e.g., short,
int, long) and real values (e.g., float, double).

UIW_WINDOW—A rectangular region of the screen that is

composed of one or more class objects derived from the
UI_WINDOW_OBIJECT base class.

Zinc Interface Library — Programmer’s Reference

UIW_MATRIX—A two-dimensional list of related items. These
items are organized in a row/column fashion and may be any of
the objects described in the window object hierarchy.

UIW_POP_UP_MENU—A group of related UIW_POP_UP -
ITEM objects. The items in this menu are displayed on
multiple lines.

UIW_PULL_DOWN_MENU—A group of related UIW_PULL -
DOWN_ITEM objects. The items in this menu are displayed
across a single, horizontal line.

UIW_PROMPT—A string that is used to describe the contents of
another window field.

UIW_TITLE—An object that occupies the top region of a window
and contains a window’s title information.

Other programmer defined window objects—Any other programmer
defined window object that conforms to the operating protocol
defined by the UI_WINDOW_OBJECT base class.

Windows and window objects are attached to the window manager, or
to a parent window, at run-time by the programmer. Once a window is
attached, it receives event information from the window manager. The
public members of the UI_WINDOW_OBJECT (defined in
UI_WIN.HPP) are:

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;

UI_PALETTE_MAP *paletteMapTable;
UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
1

» eventMapTable is a pointer to the event map table associated with
the object. This table initially points to the _eventMapTable global

Chapter 25 — Ul_WINDOW_OBJECT 189

190

palette map table. This pointer can be reset by the programmer.
(For more information about the _eventMapTable variable see
“Chapter 14—UI_EVENT_MAP” of this manual.)

defaultDepth is the depth (for 3-dimensional appearance) of
UI_WINDOW_OBJECT class objects.

woFlags, are flags (common to all window objects) that determine
the general operation of window object. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a window object:

WOF_AUTO_CLEAR—Automatically clears the edit buffer if
the end-user positions on the first character of the window field
(from another window field) then presses a key (without having
previously pressed any movement keys.)

WOF_BORDER—Draws a single line border around the
window object. If the application program is running in text
mode and the field occupies 1 line of the screen display, setting
this option draws display braces (i.e., ‘[’ /|") around the object.

WOF_INVALID—Sets the initial status of the window field to
be “invalid.” By default, all window information is valid. A
programmer may specify a field as invalid by setting this flag
upon creation of the window object or by re-setting the flag
during the application’s run-time.

WOF_JUSTIFY_CENTER—Center-justifiesthewindowinform-
ation within the field.

WOF_JUSTIFY_RIGHT—Right-justifies the window inform-
ation within the field.

WOF_NO_ALLOCATE_DATA—Prevents the window object
from allocating a data space to store the window object’s
information. If this flag is set, the programmer must allocate
the data passed to the window object.

WOF_NO_FLAGS—Does not associate any special flags with

the window object. This flag should not be used in conjunction
with any other WOF flag.

Zinc Interface Library — Programmer’s Reference

WOF_NON_FIELD_REGION—The window object is not a
form field. If this flag is set the window object will occupy all
the remaining space of its parent window.

WOF_NO_INVALID—Prevents the “Leave invalid” option from
being selectable by the end-user when incomplete or invalid
window object information is entered.

WOF_NO_UNANSWERED—Prevents the “Leave unanswered”
option from being selectable by the end-user when incomplete
or invalid window object information is entered.

WOF_NON_SELECTABLE—Prevents the window object from
being selected. If this flag is set, the user will not be able to
position on the window object.

WOF_UNANSWERED—Sets the initial status of the window
field to be “unanswered.” An unanswered window field is
displayed as blank space on the screen.

WOF_VIEW_ONLY—The window object cannot be edited. If
this flag is set, the end-user will not be able to change the
window object’s information but will be able to browse through
the information.

* woStatus are status flags that specify the current state of a window
object. These flags, unlike the window object flags, are set at run-
time by the window manager and programmer. The following status
flags (declared in UI_WIN.HPP) specify the window object’s current
status:

WOS_CHANGED—The window object’s data has been modified
by the end-user.

WOS_CURRENT—The window object is the current object
recognized by the window manager. If this status flag is set, the
associated window object will get all user input. Only one
window object may have the WOS_CURRENT flag set at any
given time.

WOS_GRAPHICS—Indicates that the window object regions
are specified in graphics coordinates. This flag is used by the

Chapter 25 — Ul_WINDOW_OBJECT 191

192

window manager to determine whether a window object’s region
coordinates need to be converted to either character cell
positions or graphic pixel coordinates.

WOS_INVALID—The window object’s data is in an “invalid”
state.

WOS_NO_STATUS—No status flags are associated with the
window object at the current time.

WOS_SELECTED—indicates that the object has been selected.
The most common use for this flag is with buttons, where a
button field can be in a selected or non-selected state.

WOS_UNANSWERED—The window object’s data is in an
“unanswered” state.

true is the true coordinate of the object on the screen. In graphics
mode, this is the pixel location of the object on the screen. In text
mode, it is the character location of the object.

parent is a pointer to the window object’s parent. For example, if
a high-level window were created and contained several child objects
then the parent object for the children would be the window.

display is a pointer to the associated screen display. This pointer is
set by the window manager when the object is attached to the
screen display.

eventManager is a pointer to the associated window object’s event
manager. This pointer is set by the window manager when the
object is attached to the screen display.

windowManager is a pointer to the associated window manager.
This pointer is set by the window manager when the object is
attached to the screen display.

paletteMapTable is a pointer to a palette map table. This palette
table is used to determine the color combinations used to display a
window object.

Zinc Interface Library - Programmer’s Reference

See also

Other chapters in this manual contain more information about the
classes derived from the UI_WINDOW_OBIJECT base class as well as
their construction, destruction and use within the Zinc Interface Library
(see the references below).

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 26—UIW_BORDER” of this manual which describes a
window object derived from the Ul WINDOW_OBJECT class.

“Chapter 27—UIW_BUTTON” of this manual which describes a
window object derived from the UI_WINDOW_OBIJECT class.

“Chapter 29—UIW_FORMATTED_STRING” of this manual which
describes a window object derived from the UI_WINDOW_OBJECT
class.

“Chapter 30—UIW_ICON” of this manual which describes a window
object derived from the UI_WINDOW_OBJECT class.

“Chapter 34—UIW_NUMBER” of this manual which describes a
window object derived from the Ul_WINDOW_OBJECT class.

“Chapter 38—UIW_PROMPT” of this manual which describes a
window object derived from the Ul WINDOW_OBJECT class.

“Chapter 41—UIW_STRING” of this manual which describes a window
object derived from the UI_WINDOW_OBIJECT class.

“Chapter 45—UIW_TITLE” of this manual which describes a window
object derived from the UI_WINDOW_OBJECT class.

“Chapter 46—UIW_WINDOW?” of this manual which describes a
window object derived from the UI_WINDOW_OBJECT class.

Chapter 25 - Ul_WINDOW_OBJECT 193

UI_WINDOW_OBJECT::Next

Syntax #include <ui_win.hpp>

UL WINDOW_OBJECT *UI_WINDOW_OBJECT::Next(void);

Remarks This advanced function returns a pointer to the next window object in
the parent window’s list of window objects.

e returnValue,, is a pointer to the next window object in the parent
window’s list of window objects.

Example #include <ui_win.hpp>
%xampleFunction1()

// Create a new window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_DESTROY) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER)

// Find out if any fields are invalid.

int invalidFields = FALSE;

for (UI_WINDOW_OBJECT *object = window->First();
object; object = object->Next())
if (FlagSet(object->woStatus, WOS_INVALID))

invalidFields = TRUE;
break;

UI_WINDOW_OBJECT::Previous

Syntax #include <ui_win.hpp>

UI_WINDOW_OBIJECT *UI_WINDOW_OBJECT::Previous(void);

194 Zinc Interface Library — Programmer’s Reference

Remarks This advanced function returns a pointer to the previous window object
in the parent window’s list of window objects.

* returnValue,, is a pointer to the previous window object in the
parent window’s list of window objects.

Example #include <ui_win.hpp>
ExampleFunctioni()
{

// Create a new window.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_TITLE(*Window 1", WOF_JUSTIFY_CENTER)

// Find out if any fields are invalid.
int invalidFields = FALSE;
for (UI_WINDOW_OBJECT *object = window->Last();
object; object = object->Previous())
if (FlagSet(object->woStatus, WOS_INVALID))

invalidFields = TRUE;
break;

Chapter 25 - Ul_WINDOW_OBJECT 195

196 Zinc Interface Library - Programmer’s Reference

CHAPTER 26 - UIW_BORDER

Overview The UIW_BORDER class is used to draw a border around a window. |
The figures below show graphic and textual implementations of a '
window with a UIW_BORDER class object (the outer-most region of
the window):

[e] [General objects] [L10T]5

The public members of the UIW_BORDER class (declared in
UI_WIN.HPP) are:

%lass UIW_BORDER : public UI_WINDOW_OBJECT
public:

UIW_BORDER(void) ;
virtual “UIW_BORDER(void);

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public: }
UI_ELEMENT *previous; (

UI_ELEMENT *next; }

Chapter 26 — UIW_BORDER 197

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

| USHORT woFlags;

| USHORT woStatus;
UI_REGION true;
UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
3

class UIW_BORDER : public UI_WINDOW_OBJECT;

See also The example file XWGEN.CPP, which gives a complete example of the
UIW_BORDER class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_BORDER class is derived.

UIW_BORDER::UIW_BORDER

Syntax #include <ui_win.hpp>

UIW_BORDER::UIW_BORDER (void);

Remarks This constructor returns a pointer to a new UIW_BORDER object.
The border object always occupies the outer-most space available in the
parent window. To ensure that the border is drawn around the whole

198 Zinc Interface Library — Programmer’s Reference

window, it must be created as the window’s first object. The following
example shows the correct and incorrect order of border creation:

1) // CORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window

- 4+

new
new
new
new
new

UIW_BORDER

UIW_MAXIMIZE_BUTTON

UIW_MINIMIZE_BUTTON

UIW_SYSTEM_BUTTON

UIW_TITLE(™Window 1', WOF_JUSTIFY_CENTER)

2) // INCORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;
*window

+

+
+
+
+

new
new
new
new
new

UIW_MAXIMIZE_BUTTON

UIW_MINIMIZE BUTTON

UIW_SYSTEM_BUTTON

UIW_TITLE ("Window 1°, WOF_JUSTIFY_CENTER)
UIW_BORDER

NOTE: If the border window object is attached to a parent window, it
will automatically be destroyed when the parent window is destroyed.

Example #include <ui_win.hpp>

ExampleFunction1()

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;
*window

+ 4+ 4+ +

new
new
new
new
new

UIW_BORDER

UIW_MAXIMIZE_BUTTON

UIW_MINIMIZE BUTTON

UIW_SYSTEM_BUTTON

UIW_TITLE(™Window 1*, WOF_JUSTIFY_CENTER);

UIW_BORDER:: ~ UIW_BORDER

Syntax #include <ui_win.hpp>

virtual UI'W_BORDER:: ~ UIW_BORDER (void);

Chapter 26 — UIW_BORDER

199

200

Remarks

Example

This virtual destructor destroys the class information associated with the
UIW_BORDER object. Care should be taken to only destroy border
objects that are not attached to a parent window.

#include <ui_win.hpp>

ExampleFunctioni()
{

UIW_BORDER *border = new UIW_BORDER;

UIW_WINDOW *window = new UIW WINDOW(O, 0, 40, 10,
'WOF_NO_FLAGS, WOAF_NO_DESTROY) ;

*window

border

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1*, WOF_JUSTIFY_CENTER) ;

+ 4+ 4+ ++

{1 Manuallg destroy the border and its parent window.
*window - border;

delete border;

delete window;

// We could have just called "delete window."' Its destructor

// would have automatically called the border object
/] destructor.

Zinc Interface Library - Programmer’s Reference

CHAPTER 27 - UIW_BUTTON

Overview The UIW_BUTTON class is used to display and select options
associated with a window. For example, the UIW_MINIMIZE -
BUTTON, UIW_MAXIMIZE BUTTON and UIW_SYSTEM -
BUTTON are all classes derived from the UIW_BUTTON class. These
derived classes allow the user to minimize, maximize, or perform general
operations (e.g., size, move) on a window. The figures below show
graphic and textual implementations of UIW_BUTTON objects (i.e., the
maximize button, minimize button and system button):

e[e] [General objects] [410T]5

The public members of the UIW_BUTTON class (declared in
UI_WIN.HPP) are:

class UIW_BUTTON : public UI_WINDOW_OBJECT

{

public:
int depth;
USHORT btFlags;

UIW_BUTTON(int left, int top, int width,

char *string, USHORT btFlags, USHORT woFlags,

void (*userFunction)(void *button, UI_EVENT &event));
virtual “UIW_BUTTON(void);

const char *DataGet(void);

} void DataSet(char *string);

Chapter 27 — UIW_BUTTON 201

e depth is the depth (for 3-dimensional appearance) of the
UIW_BUTTON class object. The default depth is set by the static
UI_WINDOW_OBIJECT member variable defaultDepth.

o btFlags are flags associated with the UIW_BUTTON class. These
flags are described in the UIW_BUTTON constructor.

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{
public:

UI_ELEMENT *previous;
UI_ELEMENT *next;

};
class UI_WINDOW_OBJECT : public UI_ELEMENT

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

| USHORT woFlags;
USHORT woStatus;
UI_REGION true;
UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;

l UI_EVENT_MANAGER *eventManager;

|

UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
3

class UIW_BUTTON : public UI_WINDOW_OBJECT;

See also The example file XWMISC.CPP, which gives a complete example of the
UIW_BUTTON class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_BUTTON class is derived.

202 Zinc Interface Library — Programmer’s Reference

“Chapter 32—UIW_MAXIMIZE _BUTTON” of this manual, which
describes a class derived from the UIW_BUTTON class.

“Chapter 33—UIW_MINIMIZE_BUTTON” of this manual, which
describes a class derived from the UIW_BUTTON class.

“Chapter 35—UIW_POP_UP_ITEM” of this manual, which describes
a class derived from the UIW_BUTTON class.

“Chapter 37—UIW_POP_UP_WINDOW” of this manual, which
describes a class derived from the UIW_BUTTON class.

“Chapter 39—UIW_PULL_DOWN_ITEM” of this manual, which
describes a class derived from the UIW_BUTTON class.

“Chapter 42—UIW_SYSTEM_BUTTON” of this manual, which
describes a class derived from the UIW_BUTTON class.

UIW_BUTTON::UIW_BUTTON

Syntax #include <ui_win.hpp>
UIW_BUTTON::UIW_BUTTON(int left, int top, int width,
char *string, USHORT btFlags, USHORT woFlags,
void (*userFunction)(void *button, UIl_EVENT &event));

Remarks This constructor returns a pointer to a new UIW_BUTTON class object.

NOTE: If the button object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

e left, and top,, is the starting position of the button within its parent
field.

e width,, is the width of the button. (The height of the button is
determined automatically by the UIW_BUTTON class object.)

e string, is a pointer to the string information associated with the
button. This pointer is used by the button object if the WOF_NO_-

Chapter 27 — UIW_BUTTON 203

204

ALLOCATE_DATA flag is set. Otherwise, the string information
is copied into a buffer allocated by the UIW_BUTTON class object.

btFlags, gives information on how to display the button
information. The following flags (declared in UI_WIN.HPP) control
the general presentation and operation of a UIW_BUTTON class
object:

BTF_CHECK_MARK—Marks the first position of the button’s
string information with a check-mark if the button has been
selected (i.e., the WOS_SELECTED status flag is set).

BTF_DOWN_CLICK—Completes the button action on a
button down-click, rather than on a down-click and release
action.

BTF_NO_FLAGS—Does not associate any special flags with the
UIW_BUTTON class object. In this case the button requires
a down and up click from the mouse to complete an action.

BTF_NO_TOGGLE—Does not toggle the button’s WOS -
SELECTED status flag. If this flag is set, the WOS -
SELECTED window object status flag is not set when the
button is selected.

woFlags,, are flags (common to all window objects) that determine
the general operation of the button object. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_BUTTON class object:

WOF_BORDER—Draws a border around the button object. In

. graphics mode, setting this option draws a single line border
around the object. In text mode, setting this option draws
display braces (i.e., ‘[’ ‘') around the object.

WOF_JUSTIFY_CENTER—Center-justifies the string inform-
ation associated with the button object.

WOF_JUSTIFY_RIGHT—Right-justifies the string information
associated with the button object.

Zinc Interface Library - Programmer’s Reference

WOF_NO_ALLOCATE_DATA—Prevents the button object
from allocating a string buffer that stores the button’s string
information. If this flag is set, the programmer must allocate
the string buffer (passed as the string parameter) that is used by
the button object.

WOF_NO_FLAGS—Does not associate any special flags with
the button object. In this case, the button’s string information
will be left-justified. This flag should not be used in
conjunction with any other WOF flag.

WOF_NON_SELECTABLE—The button object cannot be
selected. If this flag is set, the user will not be able to select
the button.

e userFunction,, is a programmer-defined function that is called
whenever the button object is selected. A button object is selected
whenever the user positions on the button and presses <Enter> or
when the left mouse button is clicked. The following parameters
are passed to userFunction when the button is selected:

button,, is a pointer to the UIW_BUTTON class object or class
object derived from the UIW_BUTTON object base class. This
argument must be typecast by the programmer.

event, is a reference pointer to a copy of the event used to
reach the programmer defined function. Since this argument is
a copy of the original event, it may be changed by the
programmer.

Example #include <ui_win.hpp>
?tatic void Exit(void *button, UI_EVENT &event)

event.type = L_EXIT;

UI_EVENT_MANAGER *eventManager =
((UIW_BUTTON *)button)->eventManager;

eventManager->Put (event) ;

ExampleFunction1()

// Create a window with basic window objects
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF _NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON

Chapter 27 — UIW_BUTTON 205

UIW_BUTTON

+ new UIW _SYSTEM_BUTTON

+ new UIW TITLE(™Window 1", WOF JUSTIFY_CENTER) ;

+ new UIW_BUTTON(22, 4, 14, "Exit Program", BTF_NO_FLAGS,
WOF_JUSTIFY_CENTER, Exit);

::~UIW_BUTTON

206

Syntax

Remarks

Example

#include <ui_win.hpp>

virtual UIW_BUTTON:: ~ UIW_BUTTON(void);

This virtual destructor destroys the class information associated with the
UIW_BUTTON object. Care should be taken to only destroy button
objects that are not attached to a parent window.

#include <ui_win.hpp>
?tatic void Exit(void *button, UI_EVENT &event)

event.type = L_EXIT;

UI_EVENT_MANAGER *eventManager =
((UIW_BUTTON *)button)->eventManager;

eventManager->Put(event);

?xampleFunction1()

// Manually add a button to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_DESTROY) ;

UIW_BUTTON *button = new UIW BUTTON(22, 4, 14, "Exit Program",
BTF_NO_FLAGS, WOF_JUSTIFY_CENTER, Exit);

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);

button;

+ A+t

// Manually destroy the button and its parent window.

*window - button;

delete button;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the button object

// destructor.

Zinc Interface Library — Programmer’s Reference

UIW_BUTTON::DataGet

Syntax #include <ui_win.hpp>

const char *UIW_BUTTON::DataGet(void);

Remarks This function gets the current string information associated with the
UIW_BUTTON class object. This function returns a pointer to a
constant character array. Thus, the contents of the array cannot be
directly modified by the programmer.

e retumValue,, is a constant pointer to the button’s string
information.

Example #include <ui_win.hpp>
static void ButtonToggle(void *data, UI_EVENT &event)
{
UIW_BUTTON *button = (UIW_BUTTON *)data;

// Toggle the button string.
const char *string = button->DataGet();
if (!strcmp("Off", string))
button->DataSet("On");
else
button->DataSet("0ff");
}

ExampleFunctioni()

// Add a button to the window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM BUTTON

new UIW TITLE(™Window 1", WOF_JUSTIFY CENTER);

new UIW BUTTON(22, 4, 14, "Off", BTF_NO_FLAGS,
WOF_JUSTIFY_CENTER, ButtonToggle);

R

Chapter 27 — UIW_BUTTON 207

UIW_BUTTON::DataSet

208

Syntax

Remarks

Example

#include <ui_win.hpp>

void UIW_BUTTON::DataSet(char *string);

This function resets the current string information associated with the
UIW_BUTTON class object or tells the class object that key flags,
associated with the button object, have been changed.

e SIing,.. is a pointer to the new string information. If the WOF _-
NO_ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the UIW_-
BUTTON class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_BUTTON class
object. If this argument is NULL, no string information is changed,
but the button is re-displayed.

#include <ui_win.hpp>
static void ButtonToggle(void *data, UI_EVENT &event)
{

UIW_BUTTON *button = (UIW_BUTTON *)data;

// Toggle the button string.

const char *string = button->DataGet();

if (!stremp("Off", string))
button->DataSet("On");

else

button->DataSet("Off");

}

ExampleFunctioni ()

// Add a button to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW BORDER

new UIW_MAXIMIZE_BUTTON

new UIW MINIMIZE BUTTON

new UIW SYSTEM BUTTON

new UIW_TITLE(™Window 1", WOF_JUSTIFY CENTER);

new UIW_BUTTON(22, 4, 14, "Off", BTF_NO_FLAGS,

WOF_JUSTIFY_CENTER, ButtonToggle);

+ 4+
G5 I 5, i

Zinc Interface Library - Programmer’s Reference

CHAPTER 28 - UIW_DATE

Overview

Chapter 28 — UIW_DATE

The UIW_DATE class is used to display date information to the screen
and to collect information, in date form, from an end user. It is not the
low-level date storage object (See “Chapter 3—UI_DATE” of this
manual for information about the low-level date storage object). The
figures below show graphic and textual implementations of a window
with several variations of the UIW_DATE class object:

i2neuid’sanntns
i ran
{1°9%80. .12-31-90

Military

Long text month. ...
Short text month. ..
Short day-of-week. .
Slash & zero fill..

[] [Sample dates] (410115

Standard. ... oo
MALIBAEY .iis conoismana

[1-27-1990
[27 Jan 1990

All edited dates

Long text month....
Short text month...
Short day-of-week..
Slash & zero fill..

[January 27, 1990
[Jan. 27, 1990
[Sat. 1-27-1990
[01/27 /1990

]
]
] |should be in the
]
]
]

range
1-1-90..12-31-99

The public members
UI_WIN.HPP) are:

of the UIW_DATE class (declared in

class UIW_DATE :

public:
UIW_DATE(int left, int top, int width, UI_DATE *date,
char *range, USHORT dtFlags, USHORT woFlags,
int (*validate) (void *dateField, int ccode) = NULL);
virtual “UIW_DATE(void);

public UIW_STRING

const UI_DATE *DataGet(void);
void DataSet(UI_DATE *date);

};

209

210

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

};
class UI_WINDOW_OBJECT : public UI_ELEMENT
{
public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;
USHORT woFlags;
USHORT woStatus;
UI_REGION true;
UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;
UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
)
class UI_EDIT_INFO
{
public:
USHORT strFlags;
static void UndoStrategy(short maxObjects, long maxBytes,
short maxUndos, long maxBytesPerObject,
} short maxUndosPerObject);
’
class UIW_STRING : public UI_WINDOW_OBJECT, public UI_EDIT_INFO
public:

const char *DataGet(void);
void DataSet(char *string, int maxLength = -1);

class UIW_DATE : public UIW_STRING;

The example file XWDATE.CPP, which gives a complete example of the
UIW_DATE class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

Zinc Interface Library - Programmer’s Reference

“Chapter 3—UI_DATE” of this manual, which describes the low-level
date storage class object.

“Chapter 41—UIW_STRING” of this manual, which describes the base
class from which the UIW_DATE class is derived.

“Chapter 44—UIW_TIME” of this manual, which describes a similar
high-level class object that stores time information.

UIW_DATE::UIW_DATE

Syntax #include <ui_win.hpp>

UIW_DATE(int left, int top, int width, Ul_DATE *date, char *range,
USHORT dtFlags, USHORT woFlags,
int (*validate)(void *dateField, int ccode) = NULL);

Remarks This constructor returns a pointer to a new UIW_DATE class object.

NOTE: If the date window object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

s left, and top, is the starting position of the date field within its
parent window.

e width,, is the width of the date field. (The height of the date field
is determined automatically by the UIW_DATE class object.)

e date,,,, is a pointer to the initial date value. If the WOF_NO_-
ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the UIW_-
DATE class object is destroyed.

e range,, is a string that gives all the valid date ranges. For example,
if a range of “1-1-90..12-31-90” were specified, the UIW_DATE
class object would only accept those dates whose values fell in the
1990 calendar year. If range is NULL, any date is accepted. This
string is copied by the UIW_DATE class object.

Chapter 28 — UIW_DATE 211

212

dtFlags,, gives information on how to display and interpret the date
information. The following flags (declared in UI_GEN.HPP)
override the country dependant information supplied by all DOS
based systems:

DTF_ALPHA_MONTH—Formats the month to be displayed as
an ascii string value. Some example dates with the DTF_-
ALPHA_MONTH flag set are: "March 28, 1990,"
"December 4, 1980" and "January 3, 2003."

DTF_DASH—Separates each date variable with a dash,
regardless of the default country date separator. Some example
dates with the DTF_DASH flag set are: "3-28-1990," "12-04-
1980" and "1-3-2003."

DTF_DAY_OF_WEEK—AJds an ascii string day-of-week value
to the date. Some example dates with the DTF_DAY_OF _-
WEEK flag set are: "Wednesday March 28, 1990," "Thursday
December 4, 1980" and "Saturday January 3, 2003."

DTF_EUROPEAN_FORMAT—Forces the date to be displayed
and interpreted in the European format (i.e., day/month/year),
regardless of the default country information. Some example
dates with the DTF_EUROPEAN_FORMAT flag set are:
"28/3/1990," "4 December, 1980" and "3 Jan., 2003."

DTF_JAPANESE_FORMAT—Forces the date to be displayed
and interpreted in the Japanese format (i.e., year/month/day),
regardless of the default country information. Some example
dates with the DTF_JAPANESE FORMAT flag set are:
"1990/3/28," "1980 December 4" and "2003 Jan. 3."

DTF_MILITARY_FORMAT—Forces the date to be displayed
and interpreted in the U.S. Military format (i.e., day/month/fyear
where month is a 3 letter abbreviated word), regardless of the
default country information. Some example dates with the
DTF_MILITARY_FORMAT flag set (army style) are: "28 Mar
1900," "04 Dec 1980," and "03 Jan 2003." Some example dates
with the DTF_MILITARY and DTF_UPPER_CASE flags set
(navy style) are: "28 DEC 1900," "04 DEC 1980" and "03 JAN
2003."

Zinc Interface Library - Programmer’s Reference

Chapter 28 — UIW_DATE

DTF_NO_FLAGS—Does not associate any special flags with the
UIW_DATE class object. In this case, the date will be
displayed and interpreted using the default country information.
For example, the U.S. date "DEC 4 1989" would be shown as
"4 DEC 1989" if default country information specified a
European format, or "1989 DEC 4" if the default country
information specified a Japanese format. This flag should not
be used in conjunction with any other DTF flag.

DTF_SHORT_DAY—Adds a shortened day-of-week to the date.
Some example dates with the DTF_SHORT DAY flag set are:
"Wed. March 28, 1990," "Thurs. December 4, 1980" and
"Sat. January 3, 2003."

DTF_SHORT_MONTH—Adds a shortened alphanumeric
month to the date. Some example dates with the DTF -
SHORT_MONTH flag set are: "Mar. 28, 1990," "Dec. 4, 1980"
and "Jan. 3, 2003."

DTF_SHORT_YEAR—Forces the year to be displayed as a 2
digit value. Some example dates with the DTF_SHORT -
YEAR flag set are: "3/28/90," "December 4, 80" and "Jan. 3, 89."

DTF_SLASH—Separates each date value with a slash,
regardless of the default country date separator. Some example
dates with the DTF_SLASH flag set are: "3/28/90," "12/04/1900"
and "1/3/2003."

DTF_SYSTEM—Fills a blank date with the system date. For
example, if a blank ascii date were entered by the end-user and
the DTF_SYSTEM flag were set, then the date would be set to
the system date (e.g., "December 4, 1990").

DTF_UPPER_CASE—Converts the alphanumeric date to
upper-case. Some example dates with the DTF_UPPER_CASE
flag set are: "MARCH 28, 1990," "DEC. 4, 1980" and
"SATURDAY JAN. 3, 2003."

DTF_US_FORMAT—Forces the date to be displayed and

interpreted in the U.S. format (i.e., month/dayjyear), regardless
of the default country information. Some example dates with

213

214

the DTF_US_FORMAT flag set are: "March 28, 1990,"
"12/31/1980" and "Jan 3, 2003."

DTF_ZERO_FILL—Forces the year, month and day values to
be zero filled when their values are less than 10. Some example
dates with the DTF_ZERO_FILL flag set are: "March 08,
1990," "12/04/1980" and "01/03/2003."

woFlags,, are flags (common to all window objects) that determine
the general operation of the date object. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_DATE class object:

WOF_AUTO_CLEAR—Automatically clears the date buffer if
the end-user positions on to the first character of the date field
(from another window field) then presses a key (without having
previously pressed any movement or editing keys).

WOF_BORDER—Draws a border around the date object. In
graphics mode, setting this option draws a single line border
around the object. In text mode, setting this option draws
display braces (i.e., " ‘|’) around the object.

WOF_INVALID—Sets the initial status of the date field to be
“invalid.” An invalid date fits in the absolute range determined
by the object type (i.e., “1-1-100..12-31-32767”) but does not
fulfill all the requirements specified by the program. For
example, a date may initially be set to “3-12-90,” but the final
date, edited by the end-user, must be in the range “12-1-90..12-
31-90.” The initial date in this example fits the absolute
requirements of a UIW_DATE class object but does not fit into
the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the date inform-
ation within the date field.

WOF_JUSTIFY_RIGHT—Right-justifies the date information
within the date field.

WOF_NO_ALLOCATE_DATA—Prevents the date object from

allocatmg a UL DATE class object to store the date
information. If this flag is set, the programmer must allocate

Zinc Interface Library — Programmer’s Reference

the UI_DATE (passed as the date parameter) that is used by
the date object. “

WOF_NO_FLAGS—Does not associate any special window flags 1“
with the date object. Setting this flag left-justifies the date
information. This flag should not be used in conjunction with
any other WOF flags.

WOF_NO_INVALID—Prevents the “Leave invalid” option from ‘i\‘
being selectable by the end-user when an incomplete or invalid \;
date is entered.

WOF_NO_UNANSWERED—Prevents the “Leave unanswered” 1‘
option from being selectable by the end-user when an
incomplete or invalid date is entered.

WOF_NON_SELECTABLE—Prevents the date object from
being selected. If this flag is set, the user will not be able to
edit the date information.

WOF_UNANSWERED—Sets the initial status of the date field
to be “unanswered.” An unanswered date field is displayed as
blank space on the screen.

e validate;, is a programmer defined function that is called whenever:

1—a date string is entered and the user moves to a different
field in the form, or

2—the user moves to a different window on the screen.

The validate function is not called if the date does not fit the
absolute range for dates or if the date is outside the default range
(specified by the range argument passed in on the UIW_DATE
constructor). The following arguments are passed to validate when
a new date is entered:

dateField,,—A pointer to the UIW_DATE class object or the

class object derived from the UIW_DATE object base class.
This argument must be typecast by the programmer.

Chapter 28 — UIW_DATE 215

ccode,—The logical or system code that caused the validate
function to be called. This code (declared in UI_EVT.HPP) will
be one of the following constant values:

S_CURRENT—The date object is about to be edited. This
code is sent before any editing operations are permitted.

S_NON_CURRENT—A different field, or window, has been
selected. This code is sent after editing operations have
been performed, if the date is valid for the absolute value
of date field ranges and if date is valid for the programmer
defined range.

The validate function’s returnValue should be 0 if the date is valid.
Otherwise, the programmer should call the error system with an
appropriate error message and return -1.

Example #include <ui_win.hpp>
ExampleFunctioni ()
/! Add several time fields to a window.

UIW_WINDOW *window = UIW_WINDOW(O, 0, 45, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW PROMPT(2, 1, "Standard........... ", WOF_NO_FLAGS)
+ new UIW DATE(22, 1, 20, &date, DT _SYSTEM, DT SYSTEM,

DT SY§TEM "1-1-90. 12 31- 99' DTF NO_| FLAGS
WOF BORDER)
new UIW_PROMPT(2, 3, "Long text month....*, WOF_NO_FLAGS)
new UIW | | DATE(22, 3, 20, &date, "1-1- 90 o O 31 99",
DTF_ALPHA MONTH L DTF SYSTEM, WOF BORDER)
new UTW_PROMPT (2, 6, "STash & zero Fill..", WOF_NO _FLAGS)
new UIW DATE(22, 6, 20, &date, "1-1-90. 12-31-9§
DTF SEASH | DTF ZERO FILL | DTF SYSTEM WOF BORDER)

++

++

UIW_DATE:: ~ UIW_DATE

Syntax #include <ui_win.hpp>

virtual UIW_DATE:: ~ UIW_DATE(void);

216 Zinc Interface Library - Programmer’s Reference

Remarks This virtual destructor destroys the class information associated with the
UIW_DATE object. Care should be taken to only destroy those date
objects that are not attached to a parent window.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

UI_DATE date; // system date

UIW_DATE *dateField = new UIW_DATE(9, 1, 20, &date,
"", DTF_ALPHA_MONTH | DTF_SYSTEM, WOF_BORDER) ;

UI TIME time; // system time

UIW_TIME *timeField = new UIW TIME(9, 1, 20, &time,
**, TMF_SECONDS, WOF_BORDER);

// Create a window with system date and time information.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;

*window

+ new UIW_BORDER

+ new UIW TITLE(*Window 1*, WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Date..", WOF_NO_FLAGS)

+ dateField

+ new UIW_PROMPT(2, 1, "Time..", WOF_NO_FLAGS)

+ timeField;

// Manually destroy the date field and its parent window.
*window - dateField;

delete dateField;

delete window;

/] We could have just called "delete window." Its destructor
// would have automatically called the date object destructor.

UIW_DATE::DataGet

Syntax #include <ui_win.hpp>
const UL_DATE *UIW_DATE::DataGet(void);
Remarks This function gets the current date information associated with the
UIW_DATE class object. This function returns a pointer to a constant
UI_DATE variable. Thus, the contents of this variable cannot be

directly modified by the programmer.

» returnValue,, is a constant pointer to the UI_DATE variable.

Chapter 28 — UIW_DATE 217

Example

#include <ui_win.hpp>
ExampleFunction1()
{

UI_DATE date; // system date

UIW_DATE *dateField = new UIW_DATE(9, 1, 20, &date,
"*, DTF_ALPHA_MONTH | DTF_SYSTEM, WOF_BORDER) ;

UI TIME time; // system time

UIW_TIME *timeField = new UIW TIME(9, 2, 20, &time,
**, TMF_SECONDS, WOF_BORDER) ;

// Create a window with system date and time information.
UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)
+ new UIW PROMPT(2, 1, "Date..", WOF_NO_FLAGS)
+ dateField
+ new UIW_PROMPT (2, 2, "Time..", WOF_NO_FLAGS)
+ timeField;

)/ Reset the date and time information.
extern int ResetDateTime(void);
%f (ResetDateTime())

date.Import(); // Get the new system date.
time.Import(); // Get the new system time.
dateField->DataSet (&date);
timeField->DataSet(&time);

}
else

date
time

*dateField->DataGet();
*timeField->DataGet();

UIW_DATE::DataSet

218

Syntax

Remarks

#include <ui_win.hpp>

void UIW_DATE::DataSet(UI_DATE *date);

This function resets the current date information associated with the
UIW_DATE class object or tells the class object that key flags,
associated with the date object, have been changed.

e date,,,, is a pointer to the new date information. If the WOF _-

NO_ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the

Zinc Interface Library — Programmer’s Reference

UIW_DATE class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_DATE class
object. If this argument is NULL, no date information is changed,
but the date field is re-displayed.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

UI DATE date; // system date

UIW_DATE *dateField = new UIW_DATE(9, 1, 20, &date,
*", DTF_ALPHA_MONTH | DTF_SYSTEM, WOF_BORDER) ;

UI TIME time; // system time

UIN_TIME *timeField = new UIW TIME(9, 2, 20, &time,
**, TMF_SECONDS, WOF_BORDER) ;

// Create a window with system date and time information.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11
_WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

3

+ new UIW_BORDER

+ new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)
+ new UIW PROMPT (2, 1, "Date.."; WOF_NO_FLAGS)
+ dateField

+ new UIW_PROMPT(2, 2, "Time..", WOF_NO_FLAGS)
+ timeField;

}/ Reset the date and time information.
extern int ResetDateTime(void);

if (ResetDateTime())

{

date.Import(); // Get the new system date.
time.Import(); // Get the new system time.
dateField->DataSet (&date);
timeField->DataSet (&time);

}
else

date
time

*dateField->DataGet();
*timeField->DataGet();

Chapter 28 — UIW_DATE 219

220 Zinc Interface Library — Programmer’s Reference

CHAPTER 29 - UIW_FORMATTED_STRING

Overview The UIW_FORMATTED_STRING class is used to display string
information to the screen and to collect information, in a formatted
context, from an end user. The figures below show graphic and textual
implementations of two UIW_FORMATTED_STRING class objects:

String. .. - S le strin
Formatted strines.. [(801) 785-8300
Sample text

[«] [Sample strings] [4107];
SERENG - iveas sivin [Sample string |
Formatted strings.. [(801) 785-8900] [84602-0000]
WEXT oo AT i

Sample text

The public members of the UIW_FORMATTED_STRING class
(declared in UI_WIN.HPP) are:

class UIW_FORMATTED STRING :
public¢ UI_WINDOW_OBJECT, public UI_EDIT_INFO

public:
UIW_FORMATTED_STRING(int left, int top, int width,
char *string, char *editMask, char *1literalMask,
USHORT woFlags,
int (*validate)(void *stringField, int ccode) = NULL);
virtual “UIW_FORMATTED_STRING(void);

const char *DataGet(void);

voild DataSet(char *string);
};

Chapter 29 — UIW_FORMATTED_STRING 221

222

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT
{
public:

UI_ELEMENT *previous;
UI_ELEMENT *next;

class UI_WINDOW_OBJECT : public UI_ELEMENT
{
public:

};

static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

class UI_EDIT_INFO
{
public:

};

static void UndoStrategy(short maxObjects, long maxBytes,
short maxUndos, long maxBytesPerObject,
short maxUndosPerObject);

class UIW_FORMATTED_STRING :

publiC UI_WINDOW_OBJECT, public UI_EDIT_INFO;

The example file XWSTRING.CPP, which gives a complete example of
the UIW_FORMATTED_STRING class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_FORMATTED_STRING class is

derived.

Zinc Interface Library — Programmer’s Reference

“Chapter 41—UIW_STRING” of this manual, which describes a similar
class derived from the UIW_WINDOW_OBJECT and UI_EDIT_INFO
classes.

UIW_FORMATTED_STRING::UIW_FORMATTED_STRING

Syntax #include <ui_win.hpp>

UIW_FORMATTED_STRING::UIW_FORMATTED_STRING(

int left, int top, int width, char *string, char *editMask,
char *literalMask, USHORT woFlags,
int (*validate)(void *stringField, int ccode) = NULL);

Remarks This constructor returns a pointer to a new UIW_FORMATTED -
STRING class object.

NOTE: If the formatted-string object is added to a parent window, it will
automatically be destroyed when the parent window is destroyed.

left,, and top,, is the starting position of the formatted-string field
within its parent window.

width;, is the width of the formatted-string field. (The height of the
formatted string field is determined automatically by the UIW_-
FORMATTED_STRING class object.)

string;, is an initial string that conforms to the editMask and
literalMask arguments. This pointer is used by the formatted-string
object if the WOF_NO_ALLOCATE_DATA flag is set for the
field. Otherwise, the string is copied into a buffer, allocated by the
UIW_FORMATTED_STRING object.

editMask;, is a character array that indicates the type of characters
that can be entered at different positions in the format string. This
argument is always copied by the UIW_FORMATTED_STRING
class object. Valid characters used to define the edit mask are:

a—Allows the end-user to enter a space (‘) or any letter (i.c.,
‘@’ through ‘2’ or ‘A through ‘Z).

Chapter 29 — UIW_FORMATTED_STRING 223

224

A—Same as the ‘@’ character option except that a lower-case
letter is automatically converted to upper-case.

c—Allows the end-user to enter a space (‘’), a number (i.e., ‘0’
through ‘9’), or any alphabetic character (i.e., ‘a’ through ‘z’ or
‘A through ‘Z).

C—Same as the ‘C’ character option except that a lower-case
letter is automatically converted to upper-case.

L—Uses this position as a literal place holder. Using this
character causes the formatted string to get the character to be
read and displayed from the literal mask. The end-user cannot
position on or edit this character.

N—Allows the end-user to enter any digit.

x—Allows the end-user to enter any printable character (i.e., ¢’
through ‘~).

X—Same as the X’ character option except that a lower-case
letter is automatically converted to upper-case.

literalMask;, is a character array that contains the literal characters
to be used whenever a character is deleted from a particular
position in the formatted string. This argument is copied by the
UIW_FORMATTED_STRING class object.

woFlags,, are flags (common to all window objects) that determine
the general operation of the formatted string object. The following
flags (declared in UI_WIN.HPP) control the general presentation of,
and interaction with, a UIW_FORMATTED_STRING class object:

WOF_AUTO_CLEAR—Automatically clears the string buffer if
the end-user positions on the first character of the field (from
another window field) then presses a key (without having
previously pressed any movement or editing keys).

WOF_BORDER—Draws a border around the formatted string
object. In graphics mode, setting this option draws a single line
border around the object. In text mode, setting this option
draws display brackets (i.e., [’ ‘]") around the object.

Zinc Interface Library — Programmer’s Reference

e

WOF_INVALID—Sets the initial status of the formatted-string
field to be “invalid.” By default, all formatted-string
information is valid. A programmer may specify a formatted-
string field as invalid by setting this flag upon creation of the
string object or by re-setting the flag through the validate
function (discussed below). For example, a formatted-string
field (phone number) may initially be set to “(000) 000-0000”,
but the final string edited by the end-user must contain some
valid phone number. In this case the initial string information
does not fulfill the programmer’s requirements.

WOF_NO_ALLOCATE_DATA—Prevents the formatted-string
object from allocating a string buffer that stores the string
information. (This has no effect on the edit mask or literal
mask.) If this flag is set, the programmer must allocate the
string buffer (passed as the string parameter) that is used by the
formatted-string object.

WOF_JUSTIFY_CENTER—Center-justifies the string inform-
ation within the formatted-string field.

WOF_JUSTIFY_RIGHT—Right-justifies the string information
within the formatted-string field.

WOF_NO_FLAGS—Does not associate any special flags with
the formatted-string object. In this case, the string buffer will
be left-justified. This flag should not be used in conjunction
with any other WOF flag.

WOF_NO_INVALID—Prevents the “Leave invalid” option from
being selectable by the end-user when an incomplete or invalid
formatted string is entered.

WOF_NO_UNANSWERED—Prevents the “Leave unanswered”
option from being selectable by the end-user when an
incomplete or invalid formatted string is entered.

WOF_NON_SELECTABLE—Prevents the formatted-string

object from being selected. If this flag is set, the end-user will
not be able to edit the formatted-string information.

Chapter 29 — UIW_FORMATTED_STRING 225

226

WOF_UNANSWERED—Sets the initial status of the formatted-
string field to be “unanswered.” An unanswered formatted-
string field is displayed as blank space on the screen.

validate,, is a programmer defined function that is called whenever:

1—a formatted string is entered and the user moves to a
different field in the form, or

2—the user moves to a different window on the screen.

The following arguments are passed to validate when formatted-
string information is entered:

stringField,,—A pointer to the UIW_FORMATTED_STRING
class object or the class object derived from the UIW_-
FORMATTED_STRING object base class. This argument
must be typecast by the programmer.

ccode,—The logical or system code that caused the validate
function to be called. This code (declared in UI_EVL.HPP) will
be one of the following constant values:

S_CURRENT—The formatted-string object is about to be
edited. This code is sent before any editing operations are
permitted.

S_NON_CURRENT—A different field, or window, has been
selected. This code is sent after editing operations have
been performed.

The validate function’s returnValue should be O if the formatted

string is valid. Otherwise, the programmer should call the error
system with an appropriate error message and return -1.

Zinc Interface Library — Programmer's Reference

Example #include <ui_win.hpp>
ExampleFunctioni()

// Add formatted string fields to a window

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
"WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER
+ new UIW TITLE(" Sample strings ", WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, Formatted strings..", WOF_NO_FLAGS)
+ new UIW_FORMATTED STRING(22, 1, 41, '8017858900T

"LNNNCLNNNLNNNNT, *(...) l WOF BORDER)
+ new UIW FORMATTED STRING(43‘ 2 20 846020000" ,
*NNNNNLNNNN®, *7.... WOF BORDER),

UIW_FORMATTED_STRING:: ~ UIW_FORMATTED_STRING

Syntax #include <ui_win.hpp>

virtual UIW_FORMATTED STRING::
~ UIW_FORMATTED_STRING (void);

Remarks This virtual destructor destroys the class information associated with the
UIW_FORMATTED_STRING object. Care should be taken to only
destroy formatted-string objects that are not attached to a parent

window.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

// Add a string field to the window.
UIW_FORMATTED_STRING *stringl =
new UIW_FORMATTED STRING(22, 1, 21, "8017858900",
'LNNNLLNNNLNNNN' p (&,', WOF_BORDER) ;
UIW_FORMATTED STRING ‘string2 =
new UIW_FORMATTED _STRING(43, 2, 20, "846020000",
*NNNNNLNNNN®, *..7.. oy WOF BORDER)

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,

"WOAF_NO_DESTROY) ;
*window

+ new UIW_BORDER

+ new UIW_TITLE(" Sample strings ", WOF_JUSTIFY_CENTER)

+ new UIW_PROMPT(2, 1, "Formatted strings. .", WOF_NO_FLAGS)
+ stringi

+ string2;

Chapter 29 — UIW_FORMATTED_STRING

227

// Manually destroy the formatted string fields and their

// parent window.

*window - stringl - string2;

delete stringil;

delete string2;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the formatted string field
// destructors.

UIW_FORMATTED_STRING::DataGet

228

#include <ui_win.hpp>

const char *UIW_FORMATTED_STRING::DataGet(void);

This function gets the current formatted-string buffer information
associated with the UIW_FORMATTED_STRING class object. This
function returns a pointer to a constant character array. Thus, the
contents of the array cannot be directly modified by the programmer.

e returnValue,, is a constant pointer to the formatted-string buffer.

#include <ui_win.hpp>
ExampleFunctiont ()
{

// Manually add a formatted string field.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
UIW_FORMATTED STRING *stringField =
“new UIW_FORMATTED STRING(22, 1, 41, "8017858900",
"LNNNLLNNNLNNNN®, " (...) .-....', WOF_BORDER) ;

*window
+ new UIW_BORDER
+ new UIW_TITLE(" Sample strings ", WOF_JUSTIFY_CENTER)
+ new UIW PROMPT(2, 1, "Formatted strings..", WOF_NO_FLAGS)
+ stringField;

}/ Get the contents of the formatted string buffer.
const char *buffer = stringField->DataGet();

Zinc Interface Library — Programmer’s Reference

UIW_FORMATTED_STRING::DataSet

Syntax #include <ui_win.hpp>

void DataSet(char *string);

Remarks This function resets the string information associated with the
UIW_FORMATTED_STRING class object or tells the class object that
key flags, associated with the formatted-string object, have been
changed.

e string, is a pointer to the new string. This string must conform to
the editMask and literalMask arguments passed to the formatted-
string constructor. If the WOF_NO_ALLOCATE_DATA flag is
set, this argument must be space, allocated by the programmer, that
is not destroyed until the UIW_FORMATTED_STRING class
object is destroyed. Otherwise, the information associated with this
argument is copied by the UIW_FORMATTED_STRING class
object. If this argument is NULL, no string information is changed,
but the formatted-string field is re-displayed.

Example #include <ui_win.hpp>
ExampleFunctioni()
{

// Manually add a formatted string field to a window.
UIW_FORMATTED_STRING *stringField =
new UIW FORMATTED STRING(22, 1, 41, "8017858900",
*LNNNLLNNNLNNNN® , e o) SN s £ WOF BORDER):;

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW TITLE(" Sample strings ", WOF_JUSTIFY CENTER)
+ new UIW _PROMPT(2, 1, "Formatted strings.."', WOF_NO_FLAGS)
+ stringField;

// Reset the formatted string field buffer.
stringField->DataSet("8017858998");

Chapter 29 — UIW_FORMATTED_STRING 229

230 Zinc Interface Library - Programmer’s Reference

CHAPTER 30 - UIW_ICON

Overview The UIW_ICON class is used to display a bitmap image to the screen.
It is only available when using a graphic screen display (i.e., the
UI_DOS_BGI_DISPLAY class). The figure below shows the graphic
implementation of several UIW_ICON objects:

The public members of the UIW_ICON class (declared in
UI_WIN.HPP) are:

class UIW_ICON : public UI_WINDOW_OBJECT

{

public:
static USHORT repeatRate;
USHORT icFlags;

UIW_ICON(int left, int top, USHORT **bitmapArray,
UI_PALETTE *paletteArray, USHORT icFlags,
USHORT woFlags,

void (*userFunction)(void *icon, UI_EVENT &event));
virtual “UIW_ICON(void);

void DataGet(const USHORT **bitmapArray,
const UI_PALETTE *paletteArray);
void DataSet(USHORT **bitmapArray,
UI_PALETTE *paletteArray);
b

A bitmap is defined by an array of USHORT (unsigned short) values.
Each bitmap must be constructed in the following manner:

1—The first USHORT value must contain the width of the bitmap
in pixels.

Chapter 30 — UIW_ICON . 231

|
|

2—The second USHORT value must contain the height of the
bitmap in pixels.

3—All remaining USHORT values contain the actual bitmap
pattern. Each of these values is evaluated from high- to low-bit.

For example, a 16 x 4 bitmap (16 columns, 4 lines) that draws a
rectangle could be represented in the following manner:

// This is the bitmap for a rectangle.
USHORT rectangleBitmap[] =
{

16,

)
OXFFFF,
0x8001,
0x8001,
OXFFFF

b

/1

e e e

f
!
/
/
/

Width of the bitmap pattern.
Height of the bitmap pattern.

There are no restrictions on the height and width of a bitmap image.
The width however, is aligned along 16 bit boundaries. For example, if
a 4 x 4 bitmap were defined and contained a similar pattern to the
bitmap shown above, the following declaration could be made:

// This is the bitmap for a box.
%SHORT boxBitmap[] =

4,
4,
0XF000,
0x9000,
0x9000,
0XxF000
}s

e e
S

Width of the bitmap pattern.
Height of the bitmap pattern.
sece Only the top four bits
of these values are
evaluated.

Similarly, a 32 x 4 rectangle bitmap would be represented in the
following manner:

// This is the bitmap for 32 pixel wide rectangle.
¥SHORT rectangleBitmap[] =

32,

4,

OXFFFF, OXFFFF,
0x8000, 0x0001,
0x8000, 0x0001,

OXFFFF,
};

OXFFFF

Width of the bitmap pattern.
Height of the bitmap pattern.
Each line is represented by

2 USHORTS.
"'0..!'......0...0..'0..I...i..

e e T N
NN NSNS~

(AR AR R R R N R R N R R R Y

The highlight bits (i.e., those bits whose values are 1) of the bitmap are
drawn with the foreground color of the palette argument. The non-

232

Zinc Interface Library — Programmer’s Reference

Inheritance

See also

highlight bits (i.e., those bits whose values are 0) of the bitmap are
drawn with the background color of the associated color palette.

The constants BITMAP_WIDTH and BITMAP_HEIGHT are declared
to give array access to the height and width values of a specified bitmap.
Bitmaps do not have text screen equivalents.

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

};

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
3

class UIW_ICON : public UI_WINDOW_OBJECT;

The example file XWMISC.CPP, which gives a complete example of the
UIW_ICON class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_ICON class is derived.

Chapter 30 — UIW_ICON 233

“Chapter 27—UIW_BUTTON?” of this manual, which describes a similar
selectable class object.

UIW_ICON::UIW_ICON

Syntax #include <ui_win.hpp>

UIW_ICON:UIW_ICON(int /eft, int top, USHORT **bitmapArray,
UI_PALETTE *paletteArray, USHORT icFlags,
USHORT woFlags,
void (*userFunction)(void *icon, UI_EVENT &event));

Remarks This constructor returns a pointer to a new UIW_ICON class object.

NOTE: If the icon is attached to a parent window, it will automatically
be destroyed when the parent window is destroyed.

e left,, and fop,, is the starting position of the icon in the window.
The ending position is determined by the bitmap pattern.

e bitmapArray,, is an array of bitmap entries where the last entry is
NULL (see example below).

e paletteArray,, is an array of palette entries. This array must match
the bitmapArray for total number of entries.

* icFlags;, are flags that determine the type of interaction that the
icon object accepts. The following flags (declared in UI_WIN.HPP)
control the general interaction of a UIW_ICON class object:

ICF_DOUBLE_CLICK—Completes the icon action on a
double-click, rather than on a single down-click and release
action. This flag has no effect on keyboard interfaces.

ICF_DOWN_CLICK—Completes the icon action on a button
‘ down-click, rather than on a down-click and release action.
1 This flag has no effect on keyboard interfaces.

234 Zinc Interface Library — Programmer’s Reference

ICF_NO_FLAGS—No special options are selected with the
UIW_ICON class object. In this state the icon requires a down
and up click from the mouse to complete an action.

woFlags,, are flags that determine the general operation of the icon
object. These flags are general to all window objects. The
following flags (declared in UI_WIN.HPP) change the presentation
of, or interaction with, a UIW_ICON class object:

WOF_BORDER—Draws a single-line border around the icon
object.

WOF_NO_FLAGS—Uses default information about the icon
object.

WOF_NON_FIELD_REGION—The icon object is not a form
field. If this flag is set and the icon is attached to a higher-level
window, then the left, top and width arguments are ignored and
the icon will occupy any remaining space within the parent
window. Otherwise, this advanced flag should only be used
when attaching an icon object directly to the screen display.

WOF_NON_SELECTABLE—The icon object cannot be
selected. If this flag is set, the user will not be able to select
the icon.

userFunction,, is a user defined function that is called whenever the
icon is selected. An icon is selected whenever the user is positioned
on the icon and presses <Enter>, or when the left mouse button
is clicked. The following parameters are passed to userFunction
when the icon is selected:

icon;, is a pointer to the UIW_ICON class object or class object
derived from the UIW_ICON object base class. This argument
must be typecast by the programmer.

event,, is a reference pointer to a copy of the event used to
reach the programmer defined user function. Since this
argument is a copy of the original event, it may be changed by
the programmer.

Chapter 30 — UIW_ICON 235

Example

#include <graphics.h>
#include <ui_win.hpp>

static USHORT handBitmapi[] =
{

32, 15,

0x0001, 0x8000, 0x0006, 0x6000,
0xOF18, Ox1FFO, 0XODEO, 0x0808,
0x0D00, 0x0808, 0x0D01, OXFFFO,
0x0D02, 0x0080, 0x0D02, 0x0080,
0x0D01, OXFFOO, 0x0D02, 0x0100,
0x0D02, 0x0100, 0x0D01, OXFEOO,
0XODE1, 0x0200, 0XOF1F, 0x0200,

0x0001, OxFEOO

}-
UéHORT *handBitmaps[] = { handBitmapi, 0 };
static UI_PALETTE handPalettes[] =

B
*\2607, attrib(BLACK, WHITE), attrib(MONO DIM, MONO_BLACK),
INTERLEAVE FILL, attrib(BLACK, WHITE)
attrib(BW_WHITE, BW_WHITE), attrib(Gs GRAY, GS_GRAY) } };

ExampleFunction1()
{

// Attach the icon to a window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE BUTTON

new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM BUTTON

new UIW_TITLE("Example Icons"', WOF_JUSTIFY_CENTER)

new UIW_ICON(7, 3, handBitmaps, handPalettes,
ICF_NO_FLAGS, WOF NO_FLAGS) ;

+ 4+

// Attach the icon to the window manager.

UIW_ICON *icon = new UIW_ICON(7, 3, handBitmaps, handPalettes,
TICF_NO_FLAGS, WOF_NO_FLAGS);

extern UI WINDOW MANAGER ™ 'windowManager

*windowManager + icon;

UIW_ICON::~ UIW_ICON

Syntax

Remarks

236

#include <ui_win.hpp>
virtual UIW_ICON:: ~ UIW_ICON(void);
This virtual destructor destroys the class information associated with the

UIW_ICON object. Care should be taken to only destroy icon objects
that are not attached to a the parent window.

Zinc Interface Library - Programmer’s Reference

Example #inc
P #inc

stat
{

lude <graphics.h>
lude <ui_win.hpp>

ic USHORT handBitmapi[] =

32; 1§,

0x0001, 0x8000, 0x0006, 0x6000,
OxOF18, Ox1FFO, OxODEO, 0x0808,
0x0D00, 0x0808, 0x0D01, OxFFFO,
0x0D02, 0x0080, 0x0D02, 0x0080,
0x0D01, OxFFO0O, 0x0D02, 0x0100,
0x0D02, 0x0100, 0x0D01, OXFEOO,
Ox0DE1, 0x0200, O0xOF1F, 0x0200,

0x0001, OxFEO0O

}.
UéHORT *handBitmaps[] = { handBitmap1, 0 };

stat

Exam

Chapter 30 — UIW_ICON

ic UI_PALETTE handPalettes[] = { {

'\2607, attrib(BLACK, WHITE), attrib(MONO_DIM, MONO_BLACK),
INTERLEAVE FILL, attrib(BLACK, WHITE),

attrib(BW_WHITE, BW_WHITE), attrib(GS_GRAY, GS_GRAY) } };

pleFunctioni()
// Attach the icon to the window.

UIW_ICON *icon1 = new UIW_ICON(7, 3, handBitmaps, handPalettes,

TICF_NO_FLAGS, WOF_NO_FLAGS) ;

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,

“WOAF_NO_DESTROY) ;
*window
new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE(TExample Icons', WOF_JUSTIFY_CENTER)
iconi;

+ 4+ttt

// Attach the icon to the window manager.

UIW_ICON *icon2 = new UIW_ICON(O, O, handBitmaps, handPalettes,

ICF_NO FLAGS, WOF_NO_FLAGS) ;

extern UI_WINDOW_MANAGER *windoﬁuanager;
*windowManager + icon2;

// Manually destroy the window and screen icons.

*window - iconi;

delete icon1i;

delete window;

*windowManager - icon2;

delete icon2;

delete windowManager;

// We could have just called "delete window" to destroy icont.
// Its destructor would have automatically called the icon

// object destructor.

237

UIW_ICON::DataGet

Syntax

Remarks

Example

238

#include <ui_win.hpp>

void UIW_ICON::DataGet(const USHORT **bitmapArray,
const UI_PALETTE *paletteArray);

This function gets the current bitmap and palette information associated
with the UIW_ICON class object. Both returned arguments are
constants. Thus the arguments cannot be directly modified by the
programmer.

e bitmapArray,, is a constant array of bitmap entries.

e paletteArray,,, is a constant array of palette entries.

#include <graphics.h>
#include <ui_win.hpp>

static USHORT handBitmapi[] =
{

32, 15,

0x0001, 0x8000, 0x0006, 0x6000,
0x0F18, Ox1FFO, Ox0DEO, 0x0808,
0x0D00, 0x0808, 0x0D01, OxFFFO,
0x0D02, 0x0080, 0x0D02, 0x0080,
0x0D01, OxFFOO, 0x0D02, 0x0100,
0x0D02, 0x0100, 0x0D01, OxFEOO,
O0xODE1, 0x0200, O0xO0F1F, 0x0200,

0x0001, OXFEOO
}-
USHORT *handBitmaps[] = { handBitmap1, 0 };

static UI_PALETTE blueHand[] = { {
'\260’, attrib(BLACK, WHITE), attrib(MONO_DIM, MONO_BLACK),
INTERLEAVE FILL, attrib(BLUE, WHITE),
attrib(BW_WHITE, BW_WHITE), attrib(GS_GRAY, GS_GRAY) } };
static UI_PALETTE redHand[]) = { {
'\260’, attrib(BLACK, WHITE), attrib(MONO_DIM, MONO_BLACK),
INTERLEAVE_FILL, attrib(RED, WHITE),
attrib(BW_WHITE, BW_WHITE), attrib(GS_GRAY, GS_GRAY) } };

ExampleFunctioni ()
// Attach the icon to the window.

UIW_ICON *icon = new UIW_ICON(7, 3, handBitmaps, blueHand,
ICF_NO_FLAGS, WOF_NO_FLAGS) ;

Zinc Interface Library — Programmer’s Reference

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER

new UIW _MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE("Example Icons", WOF_JUSTIFY_CENTER)

icon;

+ 4+ ++

// Change the hand color.

const UI_PALETTE_MAP *palette;

icon->DataGet (NULL, palette);

if (palette[O]->color == attrib(BLUE, WHITE))
icon->DataSet (NULL, redHand);

else
icon->DataSet (NULL, blueHand);

UIW_ICON::DataSet

Syntax

Remarks

Example

#include <ui_win.hpp>
void UIW_ICON::DataSet(USHORT **bitmapArray,
UI_PALETTE *paletteArray);

This function resets the bitmap and/or palette information associated
with the UIW_ICON class object or tells the class object that key flags,
associated with the icon, have been changed.

» bitmapArray,, is the new array of bitmap entries.

* paletteArray,,, is the new array of palette entries.

#include <graphics.h>
#include <ui_win.hpp>

static USHORT handBitmapi[] =
{

32, 15,
0x0001, 0x8000, 0x0006, 0x6000,
0XOF18, OX1FFO, 0XODEO, 0x0808,
0x0D00, 0x0808, 0x0D01, OXFFFO,
0x0D02, 0x0080, 0x0D02, 0x0080,
0x0D01, OXFFOO, 0x0D02, 0x0100,
0x0D02, 0x0100, 0x0D01, OXFEOO,
0XODE1, 0x0200, 0XOF1F, 0x0200,

0x0001, OxFEOO
}-
UéHORT *handBitmaps[] = { handBitmap1, 0 };

Chapter 30 — UIW_ICON 239

240

static UI PALETTE blueHand[] =

{{
"\2607, attrib(BLACK, WHITE), attrib(MONO_DIM, MONO_BLACK),
INTERLEAVE_FILL, attrib(BLUE, WHITE),
attrib(BW WHITE, BW_WHITE), attrib(GS_GRAY, GS_GRAY) } };

static UI_PALETTE redHand[] = {{

"\2607, attrib(BLACK, WHITE), attrib(MONO_DIM, MONO_BLACK),
INTERLEAVE_FILL, attrib(RED, WHITE),
attrib(BW_WHITE, BW_WHITE), attrib(GS_GRAY, GS_GRAY) } };

%xampleFunction1()

// Attach the icon to the window.
UIW_ICON *icon = new UIW_ICON(7, 3, handBitmaps, blueHand,
TICF_NO_FLAGS, WOF_NO_|! FLAGS),

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Example Icons", WOF_JUSTIFY_CENTER)
+ icon;

// Change the hand color.
const UI_PALETTE_MAP *palette;
icon->DataGet (NULL, palette);
if (palette[O]- ->color == attrib(BLUE, WHITE))
s icon->DataSet (NULL, redHand);
else
icon->DataSet (NULL, blueHand);

Zinc Interface Library — Programmer’s Reference

CHAPTER 31 - UIW_MATRIX

Overview The UIW_MATRIX class is used to display related information in a
row/column fashion within a window. The figures below show graphic
and textual implementations of a UIW_MATRIX object with several
string objects:

[e] [Sample matrix] (4107115
b e AR Sl
Item 1.1 Item 1.2
Item 2.1 Item 2.2
Item 3.1 Item 3.2
Item 4.1 Item 4.2
Item 5.1 Item 5.2

The public members of the UIW_MATRIX class (declared in
UI_WIN.HPP) are:

class UIW_MATRIX : public UIW_WINDOW

public:
USHORT mxFlags;

UIW_MATRIX(int left, int top, int width, int height,
int maxRowsColumns, int cellWidth, int cellHeight,
int (*compare)(void *element1, void *element2),
USHORT mxFlags, USHORT woFlags,

USHORT woAdvancedFlags) ;
virtual “UIW_MATRIX(void);

» muxFlags are flags that determine the display pattern of matrix items.
A complete description of these flags is given in the matrix class
constructor.

Chapter 31 — UIW_MATRIX 241

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

H
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

};

class UIW_WINDOW : public UI_WINDOW_OBJECT

public:
void Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *First(void);
UI_WINDOW_OBJECT *Last(void)
vold Subtract(UI_WINDOW_OBJECT *object);
UIW_WINDOW &operator + (void *object);

) UIW_WINDOW &operator - (void *object);

3

class UIW_MATRIX : public UIW_WINDOW;

See also The example file XWMATRIX.CPP, which gives a complete example of
the UIW_MATRIX class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_WINDOW class is derived.

242 Zinc Interface Library — Programmer’s Reference

“Chapter 36—UIW_POP_UP_MENU” of this manual, which describes
a similar class derived from the UIW_WINDOW class.

“Chapter 40—UIW_PULL_DOWN_MENU” of this manual, which
describes a similar class derived from the UIW_WINDOW class.

UIW_MATRIX::UIW_MATRIX

Syntax

Remarks

#include <ui_win.hpp>

UIW_MATRIX::UIW_MATRIX(int left, int top, int width, int height,
int maxRowsColumns, int cellWidth, int cellHeight,
int (*compare)(void *elementl, void *element2), USHORT
mxFlags, USHORT woFlags, USHORT woAdvancedFlags),

This constructor returns a pointer to a new UIW_MATRIX class object.

NOTE: If the matrix object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

* left,, and top,, is the starting position of the matrix within its parent
window.

* width,, is the width of the matrix field.

e height,, is the height of the matrix field.

* maxRowsColumns,, specifies the maximum number of matrix
elements that can be placed horizontally (if the MXF -
COLUMNS_FILL flag is set) or vertically (if the MXF_ROWS -
FILL flag is set) on the screen.

cellWidth,, specifies the maximum width of a single matrix item.

* cellHeight,, specifies the maximum height of a single matrix item.

e compare;, is a programmer defined function used to determine the
order of matrix items. New items are placed at the end of a matrix

Chapter 31 — UIW_MATRIX 243

244

list if this value is NULL. The following arguments are passed to
compare:

elementl,.—A pointer to the first argument to compare. This
argument must be typecast by the programmer.

element2, —A pointer to the second argument to compare.
This argument must be typecast by the programmer.

The compare function’s returnValue should be 0 if the two elements
exactly match. If a negative value is returned, then elementl is less
than element2. Otherwise, a positive value indicates that elementl
is greater than element2.

mxFlags,, are flags that determine the display pattern of the matrix
items. The following flags (declared in UI_WIN.HPP) control the
general presentation of the matrix items:

MXF_COLUMN_FILL—Puts the matrix items in a column
filled position. Setting this flag will ensure that the columns of
the matrix are filled before the rows are filled.

MXF_NO_FLAGS—Sorts the matrix items according to
compare. If this flag is set, the programmer must specify the
screen position of each matrix item upon its creation.

MXF_ROW_FILL—Puts the matrix items in a row filled
position. Setting this flag will ensure that the rows of the
matrix are filled before the columns are filled.

woFlags;, are flags (general to all window objects) that determine
the general operation of the matrix object. The following flags
(declared in UI_WIN.HPP) change the presentation of, or
interaction with, a UIW_MATRIX class object:

WOF_BORDER—Draws a single line border around the matrix
object.

WOF_NO_FLAGS—Does not associate any special flags with
the matrix. This flag should not be used in conjunction with
any other WOF flag.

Zinc Interface Library — Programmer’s Reference

WOF_NON_FIELD_REGION—The matrix object is not a form
field. If this flag is set and the matrix is attached to a higher-
level window, then the left, top, width and height arguments are
ignored and the matrix will occupy any remaining space within
the parent window. Otherwise, this advanced flag should only
be used when attaching a matrix object directly to the screen
display.

WOF_NON_SELECTABLE—The matrix object, and items
within the object, cannot be selected. If this flag is set, the user
will not be able to edit any of the matrix items.

e woAdvancedFlags,, are flags that determine the advanced operation
of the matrix object.

Chapter 31 — UIW_MATRIX

WOAF_NO_FLAGS—Does not associated any special advanced
flags with the matrix. Setting this flag allows the user to move,
size and interact with the matrix in a normal fashion. This flag
should not be used in conjunction with any other WOAF flag.

WOAF_TEMPORARY—The matrix only occupies the screen
temporarily. Once another window is selected from the screen,
the temporary matrix is destroyed.

WOAF_NO_DESTROY—Prevents the window manager from
calling the matrix destructor. If this flag is set, the matrix can
be removed from the screen display, but the programmer must
call the associated matrix destructor.

WOAF_NO_SIZE—Prevents the end-user from changing the
size of the matrix during an application.

WOAF_NO_MOVE—Prevents the end-user from changing the
screen location of the window during an application.

WOAF_MODAL—Prevents any other window from receiving
event information from the window manager. A modal window
receives all event information until it is removed from the
screen display.

WOAF_LOCKED—Prevents the window manager from
removing the matrix from the screen display.

245

e a—

Example #include <ui_win.hpp>
ExampleFunction1()
{

// Create the matrix field.
UIW_MATRIX * matrix = new UIW_MATRIX(22, 1, 41, 6, 5, 14, 1, 0,
MXF_NO_FLAGS, WOF_BORDER, WOAF_NO_FLAGS) ;
*matrix
+ new UIW STRING(O, O, 19, "Item 1.1", 64, STF_NO_FLAGS,
WOF_NO_FLAGS)
+ new UTW_STRING(20, 0, 19, "Item 1.2", 64,
STF_NO_FLAGS, WOF_NO_FLAGS)
+ new UTW STRING(O, 1, 19, "Item 2.1", 64,
STF_NO_FLAGS, WOF_NO_FLAGS)
+ new UIW STRING(20, T, 79, "Item 2.2", 64,
STF_NO_FLAGS, WOF_NO_FLAGS) ;

// Attach the matrix to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ UIW_BORDER
+ new UIW_TITLE(" Sample matrix ", WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Matrix............. ", WOF_NO_FLAGS)
+ matrix;

UIW_MATRIX:: ~ UIW_MATRIX

Syntax #include <ui_win.hpp>

virtual UIW_MATRIX:: = UIW_MATRIX(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_MATRIX object. Care should be taken to only destroy matrix
objects that are not automatically destroyed by the parent window.

Example #include <ui_win.hpp>
ExampleFunctioni()

/| Create the matrix field.
UIW_MATRIX * matrix = new UIW MATRIX(22, 1, 41, 6, 5, 14, 1, 0,
MXF_NO_FLAGS, WOF_BORDER, WOAF_NO_FLAGS) ;
*matrix
+ new UIW_STRING(O, O, 19, "Item 1.1", 64, STF_NO_FLAGS,
WOF_NO_FLAGS)
+ new UTW STRING(20, 0, 19, "Item 1.2, 64,
STF_NO_FLAGS, WOF_NO_FLAGS)
+ new UTW STRING(0, 1, 19, "Item 2.1', 64,
STF_NO_FLAGS, WOF_NO_FLAGS)
+ new UIW STRING(20, 7, 79, "Item 2.2", 64,
STF_NO_FLAGS, WOF_NO_FLAGS) ;

246 Zinc Interface Library — Programmer’s Reference

// Attach the matrix to the window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ UIW_BORDER
+ new UIW TITLE(" Sample matrix ", WOF_JUSTIFY CENTER)
+ new UIW _PROMPT (2, 1, "MatriX.....ccovve0. *, WOF_NO_FLAGS)
+ matrix;

// Manually destroy the matrix field and its parent window.
*window - matrix;

delete matrix;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the matrix object

// destructor.

Chapter 31 — UIW_MATRIX 247

248 Zinc Interface Library — Programmer’s Reference

CHAPTER 32 - UIW_MAXIMIZE_BUTTON

Overview The UIW_MAXIMIZE_BUTTON class is used to maximize a window.
A maximized window fills the entire display screen. The figures below
show graphic and textual implementations of a window with a UIW_-
MAXIMIZE_BUTTON class object (the button with the ‘1’ character):

e[e] [General objects] [l

The public members of the UIW_MAXIMIZE BUTTON class
(declared in UI_WIN.HPP) are:

class UIW_MAXIMIZE_BUTTON : public UIW_BUTTON

public:
UIW_MAXIMIZE _BUTTON(void);
virtual “UIW_MAXIMIZE_BUTTON(void);

b

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT
public:

UI_ELEMENT *previous;
UI_ELEMENT *next;

Chapter 32 — UIW_MAXIMIZE_BUTTON 249

250

See also

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;

UI_EVENT MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

};
class UIW_BUTTON : public UI_WINDOW_OBJECT
public:
int depth;
USHORT btFlags;
const char *DataGet(void);
void DataSet(const char *string);
};

class UIW_MAXIMIZE_BUTTON : public UIW_BUTTON;

The example file XWGEN.CPP, which gives a complete example of the
UIW_MAXIMIZE_BUTTON class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_BUTTON” of this manual, which describes the base
class from which the UIW_MAXIMIZE_BUTTON class is derived.

“Chapter 33—UIW_MINIMIZE_BUTTON” of this manual, which
describes an additional class derived from the UIW_BUTTON class.

“Chapter 42—UIW_SYSTEM_BUTTON” of this manual, which
describes an additional class derived from the UIW_BUTTON class.

Zinc Interface Library - Programmer’s Reference

UIW_MAXIMIZE_BUTTON::UIW_MAXIMIZE_BUTTON

Syntax #include <ui_win.hpp>

UIW_MAXIMIZE_BUTTON::UIW_MAXIMIZE_BUTTON (void);

Remarks This constructor returns a pointer to a new UIW_MAXIMIZE -
BUTTON class object. The maximize button object always occupies the
outer-most right corner space available in the parent window. To
ensure that the maximize button is drawn correctly, it must be created
right after the UIW_BORDER class object. The following example
shows the correct and incorrect order of maximize button creation:

1) // CORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
new UIW_BORDER
new UIW_MAXIMIZE BUTTON
new UIW_MINIMIZE BUTTON
new UIW_SYSTEM BUTTON
new UIW_TITLE(™Window 1*, WOF_JUSTIFY_CENTER)

c e+ A+t

2) // INCORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
new UIW_MINIMIZE BUTTON
new UIW MAXIMIZE BUTTON
new UIW_SYSTEM BUTTON
new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER)
new UIW_BORDER

L S

NOTE: If the maximize button is added to a parent window, it will
automatically be destroyed when the parent window is destroyed.

Example #include <ui_win.hpp>
ExampleFunctioni ()

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON

Chapter 32 - UIW_MAXIMIZE_BUTTON 251

+ new UIW MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);

UIW_MAXIMIZE_BUTTON:: ~ UIW_MAXIMIZE_BUTTON

Syntax #include <ui_win.hpp>

virtual UIW_MAXIMIZE_BUTTON::
~UIW_MAXIMIZE_BUTTON(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_MAXIMIZE_BUTTON object. Care should be taken to only
destroy maximize button objects that are not attached to a parent
window.

Example #include <ui_win.hpp>
ExampleFunctioni ()
1

// Create a window with basic window objects.

UIW_MAXIMIZE_BUTTON *maxButton = new UIW_MAXIMIZE_BUTTON;

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
WOF_NO_FLAGS, WOAF_NO_DESTROY) ;

*window

new UIW_BORDER

maxButton

new UIW _MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1*, WOF_JUSTIFY_CENTER) ;

+ 4+ 4+ +

// Remove the maximize button and its parent window.

*window - maxButton;

delete maxButton;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the maximize button

// destructor,

252 Zinc Interface Library — Programmer’s Reference

CHAPTER 33 - UIW_MINIMIZE_BUTTON

Overview The UIW_MINIMIZE_BUTTON class is used to minimize a window.
A minimized window is reduced to its smallest representable form. The
figures below show graphic and textual implementations of a window
with a UIW_MINIMIZE_BUTTON class object (the button with the v’
character):

([.] [General objects] [411T];

The public members of the UIW_MINIMIZE_BUTTON class (declared
in UI_WIN.HPP) are:

%lass UIW_MINIMIZE_BUTTON : public UIW_BUTTON
public:

UIW_MINIMIZE_BUTTON(void);
virtual “UIW_MINIMIZE_BUTTON(void);

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

Chapter 33 — UIW_MINIMIZE_BUTTON 253

254

See also

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;

UI_EVENT MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager ;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
bl
class UIW_BUTTON : public UI_WINDOW_OBJECT
public:
int depth;
USHORT btFlags;

const char *DataGet(void);
vold DataSet(const char *string);

};
class UIW_MINIMIZE_BUTTON : public UIW_BUTTON;

The example file XWGEN.CPP, which gives a complete example of the

UIW_MINIMIZE_BUTTON class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_BUTTON?” of this manual, which describes the base
class from which the UIW_MINIMIZE_BUTTON class is derived.

“Chapter 32—UIW_MAXIMIZE BUTTON” of this manual, which
describes an additional class derived from the UIW_BUTTON class.

“Chapter 42—UIW_SYSTEM_BUTTON” of this manual, which
describes an additional class derived from the UIW_BUTTON class.

Zinc Interface Library — Programmer’s Reference

UIW_MINIMIZE_BUTTON::UIW_MINIMIZE_BUTTON

Syntax

Remarks

Example

#include <ui_win.hpp>

UIW_MINIMIZE_BUTTON::UIW_MINIMIZE_BUTTON(void);

This constructor returns a pointer to a new UIW_MINIMIZE -
BUTTON class object. The minimize button object always occupies the
outer-most right corner space available in the parent window. To
ensure that the minimize button is drawn correctly, it must be created
right after the UIW_MAXIMIZE_BUTTON class object. The following
example shows the correct and incorrect order of minimize button
creation:

1) // CORRECT construction order.
UIW_WINDOW *window = new UIW _WINDOW(O, O, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
new UIW_BORDER
new UIW MAXIMIZE BUTTON
new UIW_MINIMIZE BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER)

R

2) // INCORRECT construction order.
UIW_WINDOW *window = new UIW WINDOW(O, O, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_MINIMIZE BUTTON
new UIW_MAXIMIZE BUTTON
new UIW_SYSTEM BUTTON
new UIW TITLE(™Window 1", WOF_JUSTIFY_CENTER)
new UIW_BORDER

-+ ++

NOTE: If the minimize button is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

#include <ui_win.hpp>
ExampleFunction1()

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW WINDOW(O, 0, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE BUTTON
+ new UIW_MINIMIZE_BUTTON

Chapter 33 — UIW_MINIMIZE_BUTTON 255

+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);

UIW_MINIMIZE_BUTTON:: ~ UIW_MINIMIZE_BUTTON

Syntax #include <ui_win.hpp>

virtual UIW_MINIMIZE_BUTTON::
~ UIW_MINIMIZE_BUTTON(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_MINIMIZE BUTTON object. Care should be taken to only
destroy minimize button objects that are not attached to a parent
window.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

// Create a window with basic window objects.

UIW_MAXIMIZE_BUTTON *minButton = new UIW_MINIMIZE_BUTTON;

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

minButton

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER) ;

+ 4+ + 4+

// Manually destroy the minimize button and its parent window.
*window - minButton;

delete minButton;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the minimize button

// destructor.

256 Zinc Interface Library — Programmer’s Reference

CHAPTER 34 - UIW_NUMBER

Overview The UIW_NUMBER class is used to display numeric information to the
screen and to collect information, in numeric form, from an end user.
The figures below show graphic and textual implementations of a
window with several variations of the UTW_NUMBER class object:

adit
St ars :gogld be

(87 18"

rle] [Sample numbers] [41[1]5
Standard. v vvos o [1000]
CUREBNCY .. % . ied i [$10.00] |All edited
Commas............. [1,000] [numbers should be
Fixed decimal (2).. [10.00] |in the range
i g o S S, [1000% 1 [0..10,000
SCeLantiTIC o v on [1.2345E3]

The public members of the UIW_NUMBER class (declared in
UI_WIN.HPP) are:

class UIW_NUMBER : public UI_WINDOW_OBJECT, public UI_EDIT_INFO

public:
USHORT nmFlags;

UIW_NUMBER (int left, int top, int width, char *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate) (void *numberField, int ccode) = NULL);
UIW_NUMBER (int left, int top, int width, unsigned char *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL);
UIW_NUMBER(int left, int top, int width, short *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL);
UIW_NUMBER(int left, int top, int width, unsigned short *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL);
UIW_NUMBER (int left, int top, int width, int *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL) ;

Chapter 34 — UIW_NUMBER 257

258

Inheritance

UIW_NUMBER(int left, int top, int width, unsigned int *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL);
UIW_NUMBER(int left, int top, int width, long *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate) (void *numberField, int ccode) = NULL);
UIW_NUMBER(int left, int top, int width, unsigned long *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL);
UIW_NUMBER(int left, int tog, int width, float *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate)(void *numberField, int ccode) = NULL);
UIW_NUMBER(int left, int top, int width, double *value,

char *range, USHORT nmFlags, USHORT woFlags,

int (*validate) (void *numberField, int ccode) = NULL);
virtual “UIW_NUMBER(void);

const void *DataGet(void);
void DataSet(void *value);

};

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

};
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW_MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);
}i
class UI_EDIT_INFO
{
public:
static void UndoStrategy(short maxObjects, long maxBytes,
short maxUndos, long maxBytesPerObject,

short maxUndosPerObject) ;
};

class UIW_NUMBER :
public UI_WINDOW_OBJECT, public UI_EDIT_INFO;

Zinc Interface Library — Programmer’s Reference

See also

UIW_NUMBER::

The example file XWNUMBER.CPP, which gives a complete example of
the UIW_NUMBER class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_NUMBER class is derived.

UIW_NUMBER

Syntax

#include <ui_win.hpp>

UIW_NUMBER:UIW_NUMBER(int /eft, int top, int width,
char *value, char *range, USHORT nmFlags, USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int left, int top, int width,
unsigned char *value, char *range, USHORT nmFlags,
USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int /eft, int top, int width,
short *value, char *range, USHORT nmFlags, USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int left, int top, int width,
unsigned short *value, char *range, USHORT nmFlags,
USHORT woFlags, int (*validate)(void *numberField, int ccode)
= NULL);
or

UIW_NUMBER::UIW_NUMBER(int left, int top, int width,
int *value, int *range, USHORT nmFlags, USHORT woFlags,
int (*validate)(UIW_NUMBER *object, int ccode) = NULL);
or

Chapter 34 — UIW_NUMBER 259

260

Remarks

UIW_NUMBER::UIW_NUMBER(int /eft, int top, int width,
unsigned int *value, unsigned int *range, USHORT nmFlags,
USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int left, int top, int width,
long *value, char *range, USHORT nmFlags, USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int /eft, int top, int width,
unsigned long *value, char *range, USHORT nmFlags,
USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int /eft, int top, int width,
float *value, char *range, USHORT nmFlags, USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);
or

UIW_NUMBER::UIW_NUMBER(int left, int top, int width,
double *value, char *range, USHORT nmFlags,

USHORT woFlags,
int (*validate)(void *numberField, int ccode) = NULL);

This constructor returns a pointer to a new UIW_NUMBER class
object. The type of number object created depends on the value
argument.

NOTE: If the number object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

e left;, and top,, is the starting position of number field within its
parent window.

e width;, is the width of the number field. (The height of the number

field is determined automatically by the UIW_NUMBER class
object.)

Zinc Interface Library — Programmer’s Reference

value,,,, is a constructor specific numeric value. The following
values are supported:

char—A number whose value is between -128 and 127 (8 bits,
signed).

unsigned char—A number whose value is between 0 and 255 (8
bits, unsigned).

short—A number whose value is between -32,768 and 32,767 (16
bits, signed).

unsigned short—A number whose value is between 0 and 65,535
(16 bits, unsigned).

int—A number whose value is machine dependent.

unsigned int—A number whose unsigned value is machine
dependent.

long—A number whose value is between -2,147,483,648 and
2,147,483,647 (32 bits, signed).

unsigned long—A number whose value is between 0 and
4,294,967,295 (32 bits, unsigned).

float—A single precision floating point number.
double—A double precision floating point number.

range,, is a string that gives all the valid numeric ranges. For
example, if a range of “1000..10000” were specified, the UIW_-
NUMERIC class object would only accept those numeric values
that fell between 1,000 and 10,000. If range is NULL, any number
(within the absolute range) is accepted. This string is copied by the
UIW_NUMBER class object.

Chapter 34 - UIW_NUMBER 261

e nmFlags, gives information on how to display and interpret the
numeric information. The following flags (declared in UI_-
WIN.HPP) control the general presentation of a UIW_NUMBER
class object:

NMF_DECIMAL—Displays the number with a decimal point at
a fixed location. Some example numbers with the NMF_-
DECIMAL(2) flag set are: "10,000.00," "43.45" and "$149.95."

NMF_CURRENCY—Displays the number with the country-
specific currency symbol. Some example numbers with the
NMF_CURRENCY flag set are: "$10,000.00," "DM100" and
*£195."

NMF_CREDIT—Displays the number with the ‘(" and)’ credit
symbols whenever the number is negative. For example, if the
value -10000 were entered and the NMF_CREDIT flag were
set, the value would be shown as “(10000).”

NMF_COMMAS—Displays the number with commas. Some
example numbers with the NMF_COMMAS flag set are:
"$10,000.00," "45,000" and "1,195."

NMF_NO_FLAGS—Does not associate any special flags with
the number object. In this case, the numeric information will
be left-justified. This flag should not be used in conjunction
with any other NMF flag.

NMF_PERCENT—Displays the number with a percentage
symbol. Some example numbers with the NMF_PERCENT flag
set are: "100%," "4.5%" and "10%."

NMF_SCIENTIFIC—Displays the number in scientific format.
This flag only has effect on real numeric types. Some example
real numbers with the NMF_SCIENTIFIC flag set are: "1.0E3,"
"4.5E-40" and "1.195E." NOTE: 0 exponents are not displayed
on a numeric field.

262 Zinc Interface Library - Programmer’s Reference

* woFlags,, are flags (common to all window objects) that determine
the general operation of the number object. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_NUMBER class object:

WOF_AUTO_CLEAR—Automatically clears the numeric buffer
if the end-user positions on to the first character of the number
field (from another window field) then presses a key (without
having previously pressed any movement or editing keys).

WOF_BORDER—Draws a border around the number object.
In graphics mode, setting this option draws a single line border
around the object. In text mode, setting this option draws
display brackets (i.e., ‘[, ") around the object.

WOF_INVALID—Sets the initial status of the number field to
be “invalid.” Invalid numbers fit in the absolute range
determined by the object type but do not fulfill all the
requirements specified by the program. For example, an
unsigned char number may initially be set to 200, but the final
number, edited by the end-user, must be in the range “10..100.”
The initial number in this example fits the absolute
requirements of an unsigned char UI_NUMBER class object
but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric in-
formation associated with the number object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric inform-
ation associated with the number object.

WOF_NO_ALLOCATE_DATA—Prevents the number object
from allocating a numeric value to store the numeric
information. If this flag is set, the programmer must allocate
the number (passed as the value parameter) that is used by the
number object.

WOF_NO_FLAGS—Does not associate any special window flags
with the number object. Setting this flag left-justifies the
numeric information. This flag should not be used in
conjunction with any other WOF flags.

Chapter 34 - UIW_NUMBER 263

WOF_NO_INVALID—Prevents the “Leave invalid” option in
the error window from being selected by the end-user when an
invalid number is entered.

WOF_NO_UNANSWERED—Prevents the “Leave unanswered”
option in the error window from being selected by the end-user
when an invalid number is entered.

WOF_NON_SELECTABLE—Prevents the number object from
being selected. If this flag is set, the user will not be able to
edit the numeric information.

WOF_UNANSWERED—Sets the initial status of the number
field to be “unanswered.” An unanswered number field is
displayed as blank space on the screen.

e validate,, is a programmer defined function that is called whenever:

1—a number is entered and the user moves to a different
field in the form, or

2—the user moves to a different window on the screen.

The validate function is not called if the number does not fit the
absolute range for its numeric type or if the number is outside the
default range (specified by the range argument passed in on the
UIW_NUMBER constructor). The following arguments are passed
to validate when a new number is entered:

numberField,—A pointer to the UIW_NUMBER class object
or the class object derived from the UIW_NUMBER object
base class. This argument must be typecast by the programmer.

ccode,—The logical or system code that caused the validate
function to be called. This code (declared in UI_EVT.HPP) will
be one of the following constant values:

S_CURRENT—The number object is about to be edited.

This code is sent before any editing operations are
permitted.

264 Zinc Interface Library — Programmer’s Reference

S_NON_CURRENT—A different field, or window, has been
selected. This code is sent after editing operations have
been performed, if the number is valid for the absolute
value of the numeric type and if the number is valid for the
programmer defined range.

The validate function’s returnValue should be 0 if the number is
valid. Otherwise, the programmer should call the error system with
an appropriate error message (see example below) and return -1.

Example #include <ui_win.hpp>
ExampleFunctioni ()

// Add a number field to the window.

int ivalue = 0;

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW TITLE(" Sample numbers *, WOF_JUSTIFY CENTER)

new UIW_PROMPT(2, 1, "Standard........... ", WOF_NO_FLAGS)

new UIW NUMBER(22, 1, 20, &ivalue, *0..10000",
NMF_NO_FLAGS, WOF_BORDER)

new UIW PROMPT(2, 2, "Currency........... ", WOF_NO_FLAGS)

new UIW NUMBER(22, 2, 20, &ivalue, "0..10000",
NMF_CURRENCY £ NMF_DECIMAL (2) , WOF_BORDER)

+ new UTW_PROMPT (2, 3, "Commas............. ", WOF_NO_FLAGS)

+ new UIW NUMBER(22, 3, 20, &ivalue, "0..10000",

NMF_COMMAS, WOF_BORDER) ;

+ 4+ +

+ +

UIW_NUMBER:: ~ UIW_NUMBER

Syntax #include <ui_win.hpp>

virtual UIW_NUMBER:: ~ UIW_NUMBER (void);

Remarks This virtual destructor destroys the class information associated with the
UIW_NUMBER object. Care should be taken to only destroy those
number objects that are not attached to a parent window.

Chapter 34 — UIW_NUMBER 265

Example

#include <ui_win.hpp>
ExampleFunction1()
{

// Manually add a number field to the window.

int ivalue = 0;

UIW_NUMBER *numberField = new UIW |_NUMBER (22, 1, 20, &ivalue,
~*0..10000", NMF_NO_FLAGS, WOF_BORDER);

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;

*window

new UIW_BORDER

e

+ new UIW_TITLE(" Sample numbers ", WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Standard........... *, WOF_NO_FLAGS)
+ numberField;

// Manually destroy the number object and its parent window.
*window - numberField;

delete numberField;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the number object

// destructor.

UIW_NUMBER::DataGet

266

Syntax

Remarks

Example

#include <ui_win.hpp>

const void *UIW_NUMBER::DataGet(void);

This function gets the current numeric information associated with the
UIW_NUMBER class object. This function returns a constant void
pointer to the numeric data. Thus, the contents of the number cannot
be directly modified by the programmer.

e returnValue , is a constant void pointer to the numeric value.

out

#include <ui_win.hpp>
ExampleFunct10n1()

// Manually add a number field to the window.

int ivalue = 0;

UIW_NUMBER *numberFleld new UIW_NUMBER(22, 1, 20, &ivalue,
T"0..10000", NMF_NO_FLAGS, WOF “BORDER) ;

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_TITLE(" Sample numbers ", WOF_JUSTIFY_CENTER)

Zinc Interface Library — Programmer’s Reference

+ new UIW_PROMPT(2, 1, "Standard........... ", WOF_NO_FLAGS)
+ numberField;

}/ Get the numeric contents of the field.
int newvalue = *(int *)numberField->DataGet();

UIW_NUMBER::DataSet

Syntax #include <ui_win.hpp>

void UIW_NUMBER::DataSet(void *value);

Remarks This function resets the current numeric information associated with the
UIW_NUMBER class object or tells the class object that key flags,
associated with the number object, have been changed.

* valueg,, is a pointer to the new value. If the WOF_NO -
ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the UIW_-
NUMBER class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_NUMBER
class object. Care should be taken to only reset a value that is the
same type as the original value. If this argument is NULL, no
numeric information is changed, but the number field is re-
displayed.

Example #include <ui_win.hpp>
ExampleFunctioni ()

// Manually add a number field to the window.

int ivalue = 0;

UIW_NUMBER *numberField = new UIW_NUMBER(22, 1, 20, &ivalue,
*0..10000", NMF_NO_FLAGS, WOF_BORDER);

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER
+ new UIW TITLE(" Sample numbers ", WOF_JUSTIFY_ CENTER)
+ new UIW _PROMPT(2, 1, "Standard........... ", WOF_NO_FLAGS)
+ numberField;

Chapter 34 — UIW_NUMBER 267

é // Reset the numeric information for the field.
| int newValue = 100;
numberField->DataSet (&newValue);

Zinc Interface Library — Programmer’s Reference

CHAPTER 35 - UIW_POP_UP_ITEM

Overview The UIW_POP_UP_ITEM class is used to display and select options
associated with a list of menu items. The figures below show graphic
and textual implementations of UIW_POP_UP_ITEM objects (shown
as “Option 1” through “Option 5” on the pop-up menu):

o]

—

Sample menus]

Item1 Item2 Item3

Pop-up menu........ [Option 1]
[Option 2]
[Option 3]
[Option 4]
[Option 5]

[L101]

A pull-down menu
is shown at the
top of the window.

The public members of the UTW_POP_UP_ITEM class (declared in

UI_WIN.HPP) are:

({:lass UIW_POP_UP_ITEM : public UIW_BUTTON

public:
USHORT mniFlags;

UIW_POP_UP_ITEM(char *string, USHORT mniFlags,

USHORT btFlags, USHORT woFlags,

void (*userFunction)(void *item, UI_EVENT &event));

UIW_POP_UP_ITEM(void);

virtual “UIw POP_UP_IfEM(void);

Chapter 35 — UIW_POP_UP_ITEM

269

, 270

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

};

class UI_WINDOW_OBJECT : public UI_ELEMENT
{

public:

static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW_MANAGER *windowManager ;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);
};

class UIW_BUTTON : public UI_WINDOW_OBJECT

{

public:
int depth;
USHORT btFlags;

const char *DataGet(void);
void DataSet(const char *string);

1
class UIW_POP_UP_ITEM : public UIW_BUTTON;

The example file XWMENU.CPP, which gives a complete example of the

UIW_POP_UP_ITEM class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_BUTTON?” of this manual, which describes the base
class from which the UIW_POP_UP_ITEM class is derived.

Zinc Interface Library - Programmer’s Reference

“Chapter 36—UIW_POP_UP_MENU?” of this manual, which describes
a higher-level class object that uses pop-up menu items in its menu.

“Chapter 39—UIW_PULL_DOWN_ITEM” of this manual, which
describes a higher-level class object that uses pop-up menu items in its
pop-up menu.

“Chapter 42—UIW_SYSTEM_BUTTON” of this manual, which

describes a button class object that uses pop-up menu items in its pop-
up menu.

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM

Syntax #include <ui_win.hpp>

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM(void);
or

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM(char *string,
USHORT mniFlags, USHORT btFlags, USHORT woFlags,
void (*userFunction)(void *item, UI_EVENT &event) = NULL);

Remarks This constructor returns a pointer to a new UIW_POP_UP_ITEM class
object.

NOTE: If the pop-up menu item is attached to a parent menu, it will
automatically be destroyed when the parent menu is destroyed.

The first constructor takes no arguments. It places a menu item
separator (horizontal line) in the parent menu.

The second constructor takes the following arguments:

e string, is a pointer to the string information associated with the
pull-down item. This pointer is used by the pull-down item if the
WOF_NO_ALLOCATE_DATA flag is set. Otherwise, the string
is copied into a buffer allocated by the UIW_PULL_DOWN_ITEM
class object.

Chapter 35 - UIW_POP_UP_ITEM 271

* mniFlags, gives information on how to display the item. The
i following flags (declared in UI_WIN.HPP) control the general
I presentation and operation of the pop-up item:

MNIF_DUAL_MONITOR—The menu item is only selectable
when the system is running in a dual-monitor state.

MNIF_MAXIMIZE—The menu item is only selectable when
the parent window can be maximized.

MNIF_MINIMIZE—The menu item is only selectable when the
parent window can be minimized.

MNIF_MOVE—The menu item is only selectable when the
parent window can be moved.

MNIF_NO_FLAGS—Does not associate any special flags with
the pop-up item. This flag should not be used in conjunction
with any other MNIF flag.

MNIF_RESTORE—The menu item is only selectable when the
parent window is in a maximized or minimized state.

MNIF_SEPARATOR—The menu item is a separator (it has no
; text information associated with it).

! MNIF_SIZE—The menu item is only selectable when the
| parent window can be sized.

DbtFlags,, gives information on how to display the menu item. The
following flags (declared in UI_WIN.HPP) control the general
presentation and operation of a UIW_POP_UP_ITEM class object:

BTF_CHECK_MARK—Marks the first position of the menu
item’s string information with a check-mark if the item has
been selected (i.e., the WOS_SELECTED status flag is set).

BTF_DOWN_CLICK—Completes the button action on a
button down-click, rather than on a down-click and release
action.

272 Zinc Interface Library — Programmer’s Reference

BTF_NO_FLAGS—Does not associate any special flags with the
UIW_POP_UP_ITEM class object. In this case the button
requires a down and up click from the mouse to complete an
action.

BTF_NO_TOGGLE—Does not toggle the button’s WOS_-
SELECTED status flag. If this flag is set, the WOS -
SELECTED window object status flag is not set when the menu
item is selected.

* userFunction,, is a programmer-defined function that is called
whenever the menu item is selected.

A default function is provided if the MNIF_MAXIMIZE,
MNIF_MINIMIZE, MNIF_MOVE, MNIF_RESTORE, or
MNIF_SIZE flag is set for a particular menu item and the supplied
userFunction is NULL. These default functions send messages to
maximize, minimize, move, restore, or size the parent window.

A menu item object is selected whenever the user is positioned on
the item and presses <Enter> or when the left mouse button is
clicked. The following parameters are passed to userFunction when
the item is selected:

item,, is a pointer to the UIW_POP_UP_ITEM class object or
class object derived from the UIW_POP_UP_ITEM object base
class. This argument must be typecast by the programmer.

event;, is a reference pointer to a copy of the event used to
reach the programmer defined function. Since this argument is
a copy of the original event, it may be changed by the
programmer.

Example #include <ui_win.hpp>
ExampleFunction1()

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O0, 0, 40, 10, WOF_NO_FLAGS,
-WOAF_NO_FLAGS);
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON

Chapter 35 — UIW_POP_UP_ITEM 273

+ &(*new UIW_SYSTEM_BUTTON
+ new UIW POP_UP ITEM("~Restore"', MNIF_RESTORE,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW POP_UP_ITEM(™-Move', MNIF_MOVE,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW POP_UP ITEM("sIze MNIF_SIZE,
BTF_NO_TOGGLE, WOF_NO FLAGS))
+ new UIW TITLE(‘Window 1*, WOF_JUSTIFY_CENTER) ;

}
ExampleFunction2()
// Create a window with a pop-up menu.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_TITLE(" Sample menus ', WOF JUSTIFY _CENTER)
+ new UIW PROMPT (2, "Pop-up menu........ “WOF_NO_FLAGS)
+ &(*new UIW_POP upP MENU(22 1 MNF SELECT_ ONE WOF_BORDER,
WOAF_NO_FLAGS)
+ new UIW POP_UP ITEM(" Option 1 *, O, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP ITEM(‘ Option 2 *, 0, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)) ;
}

UIW_POP_UP_ITEM:: ~ UIW_POP_UP_ITEM

274

Syntax

Remarks

Example

#include <ui_win.hpp>

virtual UIW_POP_UP_ITEM:: ~ UIW_POP_UP_ITEM(void);

This virtual destructor destroys the class information associated with the
UIW_POP_UP_ITEM object. Care should be taken to only destroy
pop-up items that are not attached to a parent pop-up menu.

#include <ui_win.hpp>
ExampleFunctioni()

// Create a window with basic window objects.
UIW_MINIMIZE_BUTTON *sysButton = new UIW_SYSTEM_BUTTON;

UIW_WINDOW *window = new UIW WINDOW(O, O, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_DESTROY) ;

Zinc Interface Library - Programmer’s Reference

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

sysButton

new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER);

+ 4+t

// Add system options to the window.
UIW_POP_UP_ITEM *dualMonitor = new UIW_POP UP_ITEM(
*~Switch window"', 0, MNIF_NO_FLAGS, BTF_NO_TOGGLE,
WOF_NO_FLAGS) ;
*sysButton
+ dualMonitor
+ new UIW _POP_UP _ITEM("~Restore", MNIF_RESTORE,
BTF_NO_TOGGLE, WOF NO_FLAGS)
+ new UTW POP_UP_ITEM(™~Move", MNIF_MOVE,
BTF_NO_TOGGLE, WOF_NO_ FLAGS)
+ new UTW POP_UP ITEM(™-SIze", MNIF_SIZE,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

// Remove the dual Monitor option if no longer supported.
extern int DualMonitorSupport(void);
it (!DualMonitorSupport())

*sysButton - dualMonitor;

Chapter 35 — UIW_POP_UP_ITEM 275

276 Zinc Interface Library - Programmer’s Reference

CHAPTER 36 - UIW_POP_UP_MENU

Overview The UIW_POP_UP_MENU class is used as the control structure for
selectable menu items. The figures below show graphic and textual
implementations of the UIW_POP_UP_MENU class object with several
pop-up menu items (shown as “Option 1” through “Option 5”):

r[e] [Sample menus] [4)[7T]5
Item1 Item2 Item3
Pop-up menu........ [Option 1]
[Option 2] A pull-down menu
[Option 3] is shown at the
[Option 4] top of the window.
[Option 5]

The public members of the UIW_POP_UP_MENU class (declared in
UI_WIN.HPP) are:

class UIW_POP_UP_MENU : public UIW_WINDOW

{
public:
USHORT mnFlags;

UIW_POP_UP_MENU(int left, int top, USHORT mnFlags,
USHORT woFlags, USHORT woAdvancedFlags) ;

UIW_POP_UP_ITEM *First(void);
UIW_POP_UP_ITEM *Last(void);

Chapter 36 — UIW_POP_UP_MENU 277

{ Inheritance The programmer should be aware of the following inherited member
“ functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

3
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next (void);
UI_WINDOW OBJECT *Previous(void);

b
class UIW_WINDOW : public UI_WINDOW_OBJECT

{
public:

void Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *First(void);
UI_WINDOW_OBJECT *Last(void)

void Subtract(UI_WINDOW_OBJECT *object);

|

{ UIW_WINDOW &operator + (void *object);
{ UIW_WINDOW &operator - (void *object);
| };

| class UIW_POP_UP_MENU : public UIW_WINDOW;

| See also The example file XWMENU.CPP, which gives a complete example of the
UIW_POP_UP_MENU class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 35—UIW_POP_UP_ITEM” of this manual, which describes
the menu items used with the pop-up menu.

278 Zinc Interface Library — Programmer’s Reference

“Chapter 39—UIW_PULL_DOWN_ITEM” of this manual, which
describes a menu item that uses a pop-up menu to display its sub-
options.

“Chapter 42—UIW_SYSTEM_BUTTON?” of this manual, which uses a
pop-up menu to display system options.

UIW_POP_UP_MENU::UIW_POP_UP_MENU

Syntax #include <ui_win.hpp>

UIW_POP_UP_MENU::UIW_POP_UP_MENU(int left, int top,
USHORT mnFlags, USHORT woFlags,
USHORT woAdvancedFlags); '

Remarks This constructor returns a pointer to a new UIW_POP_UP_MENU
class object.

NOTE: If the pop-up menu is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

* left,, and top,, is the starting position of the menu within its parent
window. (The ending position is computed automatically by the
UIW_POP_UP_MENU class object according to the size of the
menu items.)

» mnFlags, gives information on how to display the items in the pop-
up menu. The following flags (declared in UI_WIN.HPP) control
the general presentation and operation of the pop-up menu:

MNF_NO_FLAGS—Does not associate any special flags with
the pop-up menu. This flag should not be used in conjunction
with any other MNF flag.

MNF_SELECT_ONE—Prevents more than one menu item
from being selected from the menu.

MNF_AUTO_SORT—Automatically sorts the menu items in
alphabetical order.

Chapter 36 — UIW_POP_UP_MENU 279

280

e woFlags, are flags (general to all window objects) that determine
the general operation of the pop-up menu. The following flags
(declared in UI_WIN.HPP) change the presentation of, or
interaction with, a UIW_POP_UP_MENU class object:

WOF_BORDER—Draws a single line border around the menu.

WOF_NO_FLAGS—Does not associate any special flags with
the menu. This flag should not be used in conjunction with any
other WOF flag.

WOF_NON_FIELD_REGION—The pop-up menu object is not
a form field. If this flag is set and the menu is attached to a
higher-level window, then the left and fop arguments are
ignored and the menu will occupy any remaining space within
the parent window. Otherwise, this advanced flag should only
be used when attaching a pop-up menu directly to the screen
display.

WOF_NON_SELECTABLE—The menu object and items within
the object cannot be selected. If this flag is set, the user will
not be able to edit any of the menu items.

* woAdvancedFlags;, are flags that determine the advanced operation
of the pop-up menu.

WOAF_NO_FLAGS—Does not associated any special advanced
flags with the menu. Setting this flag allows the user to move,
size and interact with the menu in a normal fashion. This flag
should not be used in conjunction with any other WOAF flag.

WOAF_TEMPORARY—The menu only occupies the screen
temporarily. Once another window is selected from the screen,
the temporary menu is destroyed.

WOAF_NO_DESTROY—Prevents the window manager from
calling the pop-up menu destructor. If this flag is set, the menu
can be removed from the screen display, but the programmer
must call the associated menu destructor.

WOAF_NO_SIZE—Prevents the end-user from changing the
size of the pop-up menu during an application.

Zinc Interface Library — Programmer’s Reference

WOAF_NO_MOVE—Prevents the end-user from changing the
screen location of the window during an application.

WOAF_MODAL—Prevents any other window from receiving
event information from the window manager. A modal window
receives all event information until it is removed from the
screen display.

WOAF_LOCKED—Prevents the window manager from
removing the pop-up menu from the screen display.

Example #include <ui_win.hpp>
fxampleFunct10n1()

// Create a pull-down menu with menu items.
UIW_PULL_DOWN MENU *menu = UIW_POP_UP MENU(22, 1,
MNF_SELECT_ONE, WOF_BORDER, WOAF_NO_FLAGS) ;
menu
+ new UIW POP_UP_ITEM(" Option 1 ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
new UTW POP_UP_ITEM(™ Option 2 *, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF NO_FLAGS)
new UIW POP_UP ITEM(™ Option 3 *, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
new UTW POP_UP ITEM(™ Option 4 ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF NO_FLAGS)
new UIW POP_UP_ITEM(™ Option 5 *, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)) ;

+

&+

+

+

// Add the pop-up menu field to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW_PROMPT(2, 1, "Pop-up menu........ ", WOF_NO_FLAGS)
+ menu;

UIW_POP_UP_MENU::~ UIW_POP_UP_MENU

Syntax #include <ui_win.hpp>

virtual UIW_POP_UP_MENU:: ~ UIW_POP_UP_MENU(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_POP_UP_MENU object. Care should be taken to only destroy
those pop-up menus that are not attached to a parent window.

Chapter 36 — UIW_POP_UP_MENU 281

Example #1include <ui_win.hpp>
ExampleFunctioni ()

// Create a pull-down menu with menu items.
UIW_PULL_DOWN MENU *menu = UIW_POP_UP_MENU(22, 1,
MNF_SELECT_ONE, WOF_BORDER,; WOAF_NO_FLAGS) ;
menu
+ new UIW POP_UP_ITEM(" Option 1 ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP_ITEM(™ Option 2 ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP ITEM'g'r Option 3 ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP_ITEM(™ Option 4 *, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP_ITEM(™ Option 5 ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS));

// Add the pop-up menu field to the window.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ new UIW_PROMPT(2, 1, "Pop-up menu........ “, WOF_NO_FLAGS)
+ menu;

// Manually remove the menu from the window.

*window - menu;

delete menu;

delete window;

// We could have just called "delete window."' Its destructor
// would have automatically called the pop-up menu destructor.

282 Zinc Interface Library — Programmer’s Reference

CHAPTER 37 - UIW_POP_UP_WINDOW

Overview

The UIW_POP_UP_WINDOW class is used to show additional

information that cannot fit in a parent window, or when the
presentation of the information is enhanced by a separate window. The

figures below show the

graphic and textual implementations of a

UIW_POP_UP_WINDOW class object (shown as the “Salary Sub-

window”):

Address . .

Starting Date. ...
Starting Salary..
Current Salary. ..
Comnents . . .

3

Joe Progranner

Pleasant Grove, UT

4 Employment Info..
q S

ary Info

Address.

Starting Date.... [|
Starting Salary.. []
Current Salary... []
Comments. ..

See Sub-UWindow

. [Joe Programmer
. [Pleasant Grove, UT]
[1

Employment Info.. [See Sub-Window]
Salary Info......
pr———[Salary Sub-Window]

[See Sub-Window]

Chapter 37 — UIW_POP_UP_WINDOW

283

The public members of the UIW_POP_UP_WINDOW class (declared
in UI_WIN.HPP) are:

class UIW_POP_UP_WINDOW : public UIW_BUTTON

1
public:
UIW_POP_UP_WINDOW(int left, int top, int width,
char *string, UIW_WINDOW *window, USHORT btFlags,
USHORT woFlags) ;
virtual “UIW_POP_UP_WINDOW(void);

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:

UI_ELEMENT *previous;
UI_ELEMENT *next;

};

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;

UI_EVENT MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

}s
class UIW_BUTTON : public UI_WINDOW_OBJECT
{
public:
int depth;
USHORT btFlags;
const char *DataGet(void);
void DataSet(const char *string);
b

class UIW_POP_UP_WINDOW : public UIW_BUTTON;

See also The example file XWMISC.CPP, which gives a complete example of the
UIW_POP_UP_WINDOW class.

284 Zinc Interface Library - Programmer’s Reference

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_BUTTON?” of this manual, which describes the base
class from which the UIW_POP_UP_WINDOW class is derived.

“Chapter 46—UIW_WINDOW?” of this manual, which describes the
window object class used to display the pop-up window.

UIW_POP_UP_WINDOW::UIW_POP_UP_WINDOW

Syntax

Remarks

#include <ui_win.hpp>

UIW_POP_UP_WINDOW::UIW_POP_UP_WINDOW(int left,
int top, int width, char *string, UIW_WINDOW *window,
USHORT btFlags, USHORT woFlags);

This constructor returns a pointer to a new UIW_POP_UP_WINDOW
class object. The class object is not the window but an identifying string
that fits on one line in the parent window. The arguments described
below apply to the string information associated with the pop-up
window. (The arguments for the window are specified when the window
argument is constructed.)

NOTE: If the pop-up window is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

* left;, and top,, is the starting position of the pop-up window’s string
description within the parent window.

e width,, is the width of the string description. (The height of the
string is determined automatically by the UIW_POP_UP_WINDOW
class object.)

* string, is a pointer to the associated string information. This
pointer is used by the pop-up window object if the WOF_NO -

Chapter 37 - UIW_POP_UP_WINDOW 285

286

ALLOCATE_DATA flag is set. Otherwise, the string is copied into
a buffer allocated by the UIW_POP_UP_WINDOW class object.

btFlags,, gives information on how to display and select the pop-up
window. The following flags (declared in UI_WIN.HPP) control the
general presentation and operation of a UIW_POP_UP_WINDOW
class object:

BTF_DOWN_CLICK—Completes the button action on a
button down-click, rather than on a down-click and release
action.

BTF_NO_FLAGS—Does not associate any special flags with the
UIW_POP_UP_ITEM class object. In this case the button
requires a down and up click from the mouse to complete an
action.

BTF_NO_TOGGLE—Does not toggle the button’s WOS_-
SELECTED status flag. If this flag is set, the WOS_-
SELECTED window object status flag is not set when the
button is selected.

woFlags,, are flags (common to all window objects) that determine
the general operation of the pop-up window selection item. The
following flags (declared in UI_WIN.HPP) control the general
presentation of, and interaction with, a UIW_POP_UP_WINDOW
class object:

WOF_BORDER—Draws a border around the string
information. In graphics mode, setting this option draws a
single line border around the object. In text mode, setting this
option draws display braces (i.e., [’ ‘]’) around the object.

WOF_JUSTIFY_CENTER—Center-justifies the string inform-
ation associated with the pop-up window.

WOF_JUSTIFY_RIGHT—Right-justifies the string information
associated with the pop-up window.

WOF_NO_ALLOCATE_DATA—Prevents the pop-up window

from allocating a string buffer that stores the item’s string
information. If this flag is set, the programmer must allocate

Zinc Interface Library — Programmer’s Reference

the string buffer (passed as the string parameter) that is used by
the pop-up window object.

WOF_NO_FLAGS—Does not associate any special flags with
the pop-up window object. In this case, the string information
will be left-justified. =~ This flag should not be used in
conjunction with any other WOF flag.

WOF_NON_SELECTABLE—The pop-up window cannot be
selected.

Example #include <ui_win.hpp>
ExampleFunction1()
{

// Create the pop-up window.
UIW_WINDOW *popup2 = new UIW WINDOW(O, O, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*popup2
+ new UIW_BORDER
new UIW TITLE("Salary Sub-Window", WOF_JUSTIFY_CENTER)
new UIW_PROMPT (2, 1, "Starting Date....", WOF_NO_FLAGS)
new UIW _PROMPT(2, 2, "Starting Salary..", WOF_NO_FLAGS)
new UIW_PROMPT (2, 3, "Current Salary...", WOF_NO FLAGS)
new UIW_PROMPT (2, 4, "Comments...", WOF_NO_FLAGS)
new UIW DATE(20, 1, 15, &UI_DATE(), "*",
DTF_NO_FLAGS, WOF_BORDER)
new UTW STRING(20, 2, 15, **, 64,
STF_NO_FLAGS, WOF_BORDER)
+ new UIW STRING(20, 3, 15, '*, 64,
STF_NO_FLAGS, WOF_BORDER)
+ new UIW _TEXT(14, 4,723, 3, **

1024, "TXF_NO_FLAGS, WOF BORDER);

+ 4+

+

// Attach the pop-up window to a parent window.
UIW_WINDOW *window = new UIW WINDOW(O, O, 40, 10,
"WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW TITLE("Employee Information®, WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Name..... ", WOF_NO_FLAGS)
+ new UIW_PROMPT(2, 2, "Address..", WOF_NO_FLAGS)
+ new UIW_PROMPT(2, 5, "Employment Info..", WOF_NO_FLAGS)
+ new UIW PROMPT(2, 6, "Salary Info...... *, WOF_NO_FLAGS)
w UIW STRING(12, 1, 25, "Joe Programmer*, 64,
STF_NO_FLAGS, WOF_BORDER)
+ new UTW _STRING(12, 2, 25, *Pleasant Grove, UT", 64,
STF_NO_FLAGS, WOF_BORDER)
+ new UTW STRING(12, 3, 25, "", 64, STF_NO_FLAGS,
WOF_BORDER)
+ new UTW_POP_UP_WINDOW(20, 5, 15, "See Sub-Window",
popupT, BTF_NO FLAGS, WOF_NO FLAGS);
+ new UIW_POP_UP_WINDOW(20, 6, 15, *See Sub-Window",
popup2, BTF_NO_FLAGS, WOF_NO_FLAGS) ;

Chapter 37 - UIW_POP_UP_WINDOW 287

UIW_POP_UP_WINDOW::~ UIW_POP_UP_WINDOW

Syntax #include <ui_win.hpp>

virtual UIW_POP_UP_WINDOW::
~UIW_POP_UP_WINDOW(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_POP_UP_WINDOW object. Care should be taken to only destroy
pop-up window objects that are not attached to a parent window.

Example #include <ui_win.hpp>

ExampleFunction1i ()

// Create the pop-up window.
UIW_WINDOW *popup2 = new UIW_WINDOW(O, O, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*popup2
+ ne

+ 4+

+

+

+

w UIW_BORDER
new UIW TITLE("Salary Sub-Window", WOF_JUSTIFY_CENTER)
new UIW_PROMPT (2, 1, "Starting Date....", WOF_NO_FLAGS)
new UIW_PROMPT (2, 2, "Starting Salary..", WOF_NO_FLAGS)
new UIW_PROMPT (2, 3, "Current Salary..."', WOF_NO_FLAGS)
new UIW_PROMPT(2, 4, "Comments...", WOF_NO_FLAGS)
new UIW DATE(20, 1, 15, &UI_DATE(), "'",

DTF_NO_FLAGS, WOF_BORDER)
new UIW STRING(20, 2, 15, "*, 64,

STF_NO_FLAGS, WOF_BORDER)
new UIW STRING(20, 3, 15, **, 64,

STF_NO_FLAGS, WOF_BORDER)
new UIW TEXT(14, 4,723, 3, **

1024, TXF_NO_FLAGS, WOF BORDER);

// Attach the pop-up window to a parent window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

+ 4+ 4+t

+

288

new UIW TITLE("Employee Information", WOF_JUSTIFY_CENTER)

new UIW_PROMPT (2, 1, "Name..... *, WOF_NO_FLAGS)

new UIW_PROMPT (2, 2, "Address.."', WOF_NO_FLAGS)

new UIW_PROMPT (2, 5, “Employment Info..", WOF_NO_FLAGS)

new UIW_PROMPT (2, 6, "Salary Info...... ", WOF_NO_FLAGS)

new UIW STRING(12, 1, 25, "Joe Programmer", 64,
STF_NO_FLAGS, WOF_BORDER)

new UIW STRING(12, 2, 25, "Pleasant Grove, UT", 64,
STF_NO_FLAGS, WOF_BORDER)

new UIW STRING(12, 3, 25, "*, 64, STF_NO_FLAGS,
WOF_BORDER)

new UIW_POP_UP _WINDOW(20, 5, 15, "See Sub-Window",
popupT, BTF_NO FLAGS, WOF_NO FLAGS);

new UIW_POP_UP_WINDOW(20, 6, 15, "See Sub-Window",
popup2, BTF_NO_FLAGS, WOF_NO_FLAGS) ;

Zinc Interface Library - Programmer’s Reference

// Manually destroy the popup2 window and its parent window.
// The first popup window is destroyed with "delete window."
*window - popup2;

delete popup2;

delete window.

// We could have just called "delete window." Its destructor
// would have automatically called the second pop-up window
// destructor also.

Chapter 37 — UIW_POP_UP_WINDOW 289

290 Zinc Interface Library - Programmer’s Reference

CHAPTER 38 - UIW_PROMPT

Overview The UIW_PROMPT class is used to provide lead information about
another window object. The pictures below show graphic and textual
implementations of UIW_PROMPT objects (the fields with the “.”
characters):

r[e] [Sample strings] [4][1]5
StrEng..ii v i e [Sample string]
Formatted strings.. [(801) 785-8900] [84602-0000]
73 & S

Sample text

The public members of the UIW_PROMPT class (declared in
UI_WIN.HPP) are:

class UIW_PROMPT : public UI_WINDOW_OBJECT

{
public:
UIW_PROMPT (int left, int top, const char *prompt,
USHORT woFlags) ;
virtual “UIW_PROMPT(void);

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT
{
public:

UI_ELEMENT *previous;
UI_ELEMENT *next;

Chapter 38 — UIW_PROMPT 291

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;

UI_EVENT MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
} UI_WINDOW_OBJECT *Previous(void);
bl

class UIW_PROMPT : public UI_WINDOW_OBJECT;
See also The example file XWSTRING.CPP, which gives a complete example of
the UIW_PROMPT class.
“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_PROMPT class is derived.

UIW_PROMPT::UIW_PROMPT

Syntax #include <ui_win.hpp>
UIW_PROMPT::UIW_PROMPT(int left, int top, const char *prompt,
USHORT woFlags);,
Remarks This constructor returns a pointer to a new UIW_PROMPT object.

NOTE: If the prompt object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

292 Zinc Interface Library — Programmer’s Reference

* left,, and top,, is the starting position of the prompt field within its
parent window.

» prompt, is the string representation of the prompt.

» woFlags;, are flags (common to all window objects) that determine
the general operation of the prompt object. The following flags
(declared in UI_WIN.HPP) control the general presentation of a
UIW_PROMPT class object:

WOF_BORDER—Draws a border around the prompt. In
graphics mode, setting this option draws a single line border
around the object. In text mode, setting this option draws
display braces (i.e., [’ ‘]’) around the object.

WOF_NO_FLAGS—Does not associate any special window flags
with the prompt object. This flag should not be used in
conjunction with any other WOF flags.

Example #include <ui_win.hpp>

ExampleFunctioni()

// Create a standard window.

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window

+
+
+
+

+

+

+ +

Chapter 38 — UIW_PROMPT

new UIW_BORDER

new UIW TITLE(" Sample strings ", WOF_JUSTIFY_CENTER)

new UIW_PROMPT(2, 1, "String............. *, WOF_NO_FLAGS)

new UIW STRING(22 1, 41, "Sample string", 256,
STF_NO_FLAGS, WOF_BORDE R)

new UTwW FROMPT(Z 2, "Formatted strings..", WOF_NO _FLAGS)

new UIW_FORMATTED STRING(22 e, 20, '8017858900T

*LNNNCLNNNLXXXX™, *(...) ...", WOF_BORDER)

new UIW FORMATTED STRING(43 "2,°20, 846020000*
*NNNNNLNNNN®, *7....%, WOF_BORDER)

new UIW PROMPT(2, 3, *Text....e..Tvusvrs, ", WOF_NO_FLAGS)

new UIW_TEXT(22, 3, 41 4, "Sample text", 1028,
TXF_NO_FLAGS, WOF BORDER),

293

UIW_PROMPT:: ~ UIW_PROMPT

Syntax #include <ui_win.hpp>
virtual UIW_PROMPT:: ~ UIW_PROMPT|(void);
Remarks This virtual destructor destroys the class information associated with the

UIW_PROMPT object. Care should be taken to only destroy those
prompt objects that are not attached to a parent window.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

// Manually add a prompt to the window.
UIW_PROMPT *prompt = new UIW_PROMPT(2, 3,
FUTONT . o i diires ", WOF_NO_FLAGS);
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW _MINIMIZE BUTTON
new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER)
prompt
new UIW TEXT(22, 3, 41, 4, "Sample text", 1028,
TXF_NO_FLAGS, WOF BORDER),

++ o+

// Manually destroy the prompt object and its parent window.
*window - prompt;

delete prompt;

delete window;

// We could have just called "delete window."' Its destructor
// would have automatically called the prompt object

// destructor.

294 Zinc Interface Library - Programmer’s Reference

CHAPTER 39 - UIW_PULL_DOWN _ITEM

Overview The UIW_PULL_DOWN_ITEM class is used as the first-level selection
within a pull-down menu. The figures below show graphic and textual
implementations of UIW_PULL_DOWN_ITEM objects within a pull-
down menu (shown as “Item1,” “Item2” and “Item3”):

r[e] [Sample menus] [41[T]
Itemi Item2 Item3
Pop-up menu........ [Option 1]
[Option 2] A pull-down menu
[Option 3] is shown at the
[Option 4] top of the window.
[Option 5]

The public members of the UIW_PULL_DOWN_ITEM class (declared
in UI_WIN.HPP) are:

class UIW_PULL_DOWN_ITEM : public UIW_BUTTON

public:
UIW_PULL_DOWN_ITEM(char *string, USHORT mnFlags,
void (*userFunction)(void *object, UI_EVENT &event));
virtual “UIW_PULL_DOWN_ITEM(void);

void Add(UIW_POP UP_ITEM *item);
void Subtract(UIW_POP_UP_ITEM *item);

UIW_PULL_DOWN_ITEM &operator + (void *object);

UIW_PULL_DOWN_ITEM &operator - (void *object);
}

Chapter 39 - UIW_PULL_DOWN_ITEM 295

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

)
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW_MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

};
class UIW_BUTTON : public UI_WINDOW_OBJECT
public:
int depth;
USHORT btFlags;
const char *DataGet(void);
vold DataSet(const char *string);
};

class UIW_PULL_DOWN_ITEM : public UIW_BUTTON;

See also The example file XWMENU.CPP, which gives a complete example of the
UIW_PULL_DOWN_ITEM class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_BUTTON?” of this manual, which describes the base
class from which the UIW_PULL_DOWN_ITEM class is derived.

296 Zinc Interface Library — Programmer’s Reference

“Chapter 35—UIW_POP_UP_ITEM” of this manual, which describes
a menu item class used by the pull-down item.

“Chapter 37—UIW_POP_UP_MENU” of this manual, which describes
the pop-up menu class used by the pull-down item to display additional
control options.

“Chapter 36—UIW_PULL_DOWN_MENU” of this manual, which

describes a higher-level class object that uses pull-down items in its
menu.

UIW_PULL_DOWN_ITEM::UIW_PULL_DOWN_ITEM

Syntax #include <ui_win.hpp>

UIW_PULL_DOWN_ITEM::UIW_PULL_DOWN_ITEM(
char *string, USHORT mnFlags,
void (*userFunction)(void *item, UI_EVENT &event) = NULL);

Remarks This constructor returns a pointer to a new UIW_PULL_DOWN _ITEM
class object.

NOTE: If the pull-down item is attached to a parent menu, it will
automatically be destroyed when the parent menu is destroyed.

e string;, is a pointer to the string information associated with the
pull-down item. This pointer is used by the pull-down item if the
WOF_NO_ALLOCATE_DATA flag is set. Otherwise, the string
is copied into a buffer allocated by the UIW_PULL_DOWN _ITEM
class object.

» mnFlags,, gives information on how to display the item’s pull-down
menu. The following flags (declared in UI_WIN.HPP) control the
general presentation and operation of the item’s pull-down menu:

MNF_NO_FLAGS—Does not associate any special flags with

the pull-down menu. This flag should not be used in
conjunction with any other MNF flag.

Chapter 39 — UIW_PULL_DOWN_ITEM 297

MNF_SELECT_ONE—Prevents more than one menu item
from being selected.

MNF_AUTO_SORT—Automatically sorts the menu items in
alphabetical order.

e userFunction,, is a programmer-defined function that is called
whenever the pull-down item is selected.

A default function is provided if this argument is NULL. This
function brings up the pop-up window information associated with
the pull-down item. This argument, therefore, should only be set
if you want to override the system default function, or if there are
no pop-up items associated with this pull-down item.

A menu item object is selected whenever the user is positioned on
the item and presses <Enter>, or when the left mouse button is
clicked. The following parameters are passed to userFunction when
the pull-down item is selected:

item;, is a pointer to the UIW_PULL_DOWN_ITEM class
object or the class object derived from the UIW_PULL_-
DOWN_ITEM object base class. This argument must be
typecast by the programmer.

event,, is a reference pointer to a copy of the event used to
reach the programmer defined user function. Since this
argument is a copy of the original event, it may be changed by
the programmer.

Example #include <ui_win.hpp>
ExampleFunction1()
{

// Create a pull-down menu with menu items.
UIW_PULL_DOWN_MENU *menu = new UIW_PULL_DOWN_MENU (O,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
menu
+ &(*new UIW_PULL_DOWN_ITEM(" Item™1 ", MNF_NO_FLAGS,0)
+ new UIW POP_UP_ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP_ITEM(™Option 1.2", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS))
+ &(*new UIW PULL_DOWN ITEM(" Item™2 ", MNF_NO_FLAGS,0)
+ new UIW POP_UP_ITEM("Option 2.1",
MNIF_No FCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS))
+ new UIW_PULL_DOWN_ITEM(" Item~3 ", MNF_NO_FLAGS,0);

298 Zinc Interface Library — Programmer’s Reference

// Attach the menu to a window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ menu;

UIW_PULL_DOWN_ITEM:: ~ UIW_PULL_DOWN_ITEM

Syntax

Remarks

Example

#include <ui_win.hpp>

virtual UIW_PULL_DOWN_ITEM::

~UIW_PULL_DOWN _ITEM(void);

This virtual destructor destroys the class information associated with the
UIW_PULL_DOWN_ITEM object. Care should be taken to only
destroy those pull-down items that are not attached to a parent pull-
down menu.

#include <ui_win.hpp>
ExampleFunctioni ()
{

// Create a pull-down menu with menu items.
UIW_PULL DOWN_MENU *menu = new UIW_PULL_DOWN_MENU(O,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

UIW_PULL DOWN_ITEM *itemi1 = new UIW_PULL_DOWN_ITEM(* Item~1 *,
MNF_NO_FLAGS, 0);
*item1
+ new UIW POP_UP_ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;
+ new UIW POP_UP_ITEM(™Option 1.2", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

UIW_PULL DOWN_ITEM *item2 = new UIW_PULL_DOWN_ITEM(" Item~2 *
MNF_NO_FLAGS, 0);
*item2
+ new UIW POP_UP_ITEM("Option 2.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

// Attach the menu to a window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ &(*menu + item1 + item2);

Chapter 39 — UIW_PULL_DOWN_ITEM 299

// Manually destroy the menu items, being careful to destroy
// the objects in the proper order.

*menu - itemil - item2;

*window - menu;

delete menu;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the text menu item

// destructors.

UIW_PULL_DOWN_ITEM::Add

Syntax #include <ui_win.hpp>

void UIW_PULL_DOWN_ITEM::Add(
UIW_POP_UP_ITEM *item);

Remarks This function adds a new pop-up menu item to the UIW_PULL_-
DOWN_ITEM class object. (The pop-up menu item is displayed when
the pull-down item is selected.)

e item,, is a pointer to the object to be added to the pull-down items
associated pop-up menu. The new item must be a UIW_POP_UP_-
ITEM class object or a class object derived from the UIW_POP_-
UP_ITEM base class.

Example #include <ui_win.hpp>
%xampleFunction\()

// Create a pull-down menu with menu items.
UIW_PULL DOWN_MENU *menu = new UIW_PULL_DOWN_MENU(O,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

UIW_PULL_DOWN_ITEM *item1 = new UIW_PULL_DOWN_ITEM(" Item~1 *,
“MNF_NO_FLAGS, 0);
item1->Add{new UIW_POP_UP _ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
item1->Add{new UIW_POP_UP ITEM(*Option 1.2°, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)) ;

UIW_PULL_DOWN_ITEM *item2 = new UIW_PULL_DOWN_ITEM(" Item~2 *
“MNF NO FLAGS, 0);

UIW_POP_UP_ITEM '1tem21 = new UIW_POP_UP_ITEM("Option 2.1",
“MNIF_NO_FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

item2- >AHd(Item21),

300 Zinc Interface Library - Programmer’s Reference

// Attach the menu to a window.

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ &(*menu + iteml + item2);

UIW_PULL_DOWN_ITEM::Subtract

Syntax #include <ui_win.hpp>

void UIW_PULL_DOWN_ITEM::Subtract(
UIW_POP_UP_ITEM *object);

Remarks This function removes a pop-up menu item from the UIW_PULL -
DOWN_ITEM object. This function does not call the destructor
associated with the menu item.

e item, is a pointer to the item to be removed from the current menu
item’s list of pop-up menu items. This argument must be a UIW_-
POP_UP_ITEM class object or a class object derived from the
UIW_POP_UP_ITEM base class.

Example #include <ui_win.hpp>
%xampleFunction1()

// Create a pull-down menu with menu items.
UIW_PULL DOWN_MENU *menu = new UIW_PULL_DOWN_MENU (O,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

UIW_PULL DOWN_ITEM *item1 = new UIW_PULL_DOWN_ITEM("* Item~1 *
MNF_NO_FLAGS, 0);

item1->Add(new UIW_POP_UP_ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)) ;

item1->Add(new UIW_POP_UP ITEM("Option 1.2", MNIF_NO_FLAGS,

BTF_NO_TOGGLE, WOF_NO_FLAGS)) ;

UIW_PULL_DOWN_ITEM *item2 = new UIW_PULL_DOWN_ITEM(* Item~2 *
MNF_NO_FLAGS, 0);

UIW_POP UP _ITEM *item21 = new UIW_POP_UP_ITEM("Option 2.1",
MNIF_NO_FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

item2->Add (Item21);

Chapter 39 - UIW_PULL_DOWN_ITEM 301

// Attach the menu to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ &(*menu + iteml + item2);

// Remove the *Option 2.1° item.
item2->Subtract(item21);

UIW_PULL_DOWN_ITEM::operator +

Syntax #include <ui_win.hpp>

UIW_PULL_DOWN_ITEM &UIW_PULL_DOWN_ITEM::
operator + (UIW_POP_UP_ITEM *item);

Remarks This overload operator adds a pop-up menu item to the UIW_-
PULL_DOWN_ITEM class object. This operator overload is equivalent
to calling the UIW_PULL_DOWN_ITEM::Add routine, except that it
allows the chaining of pop-up menu item additions to the UIW_-
PULL_DOWN_ITEM object.

o returnValue,, is the UIW_PULL_DOWN_ITEM reference.
Returning the reference to the UIW_PULL_DOWN_ITEM object
allows chaining of the UIW_PULL_DOWN_ITEM::operator+
overload operator.

e item, is a pointer to the UIW_POP_UP_ITEM object or the object
derived from the UIW_POP_UP_ITEM base class that is to be
added to the pull-down item’s list of pop-up items.

Example #include <ui_win.hpp>
ExampleFunction1()

// Create a pull-down menu with menu items.
UIW_PULL_DOWN_MENU *menu = new UIW_PULL_DOWN_MENU (O,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
menu
+ &(*new UIW PULL_DOWN ITEM(" Item~1 ", MNF_NO_FLAGS,0)
+ new UIW POP_UP ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)

302 Zinc Interface Library — Programmer’s Reference

+ new UIW_POP_UP_ITEM("Option 1.2*, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS))
+ &(*new UIW_PULL_DOWN_ITEM(' Item™2 ", MNF_NO_FLAGS,0)
+ new UIN POP_UP_ITEM("Option 2.1",
MNIF_No FLCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS))
+ new UIW_PUCL_DOWN_ITEM(" Item~3 ', MNF_NO_FLAGS,0)

// Attach the menu to a window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ menu;

UIW_PULL_DOWN_ITEM::operator -

Syntax #include <ui_win.hpp>

UIW_PULL_DOWN_ITEM &UIW_PULL_DOWN_ITEM::
operator — (UIW_POP_UP_ITEM *item);

Remarks This overload operator removes a pop-up menu item from the UIW_-
PULL_DOWN_ITEM class object. This operator overload is equivalent
to calling the UIW_PULL_DOWN_ITEM::Subtract routine, except that
it allows the chaining of pop-up menu item removal from the UIW_-
PULL_DOWN_ITEM object.

e returnValue,, is the UIW_PULL_DOWN_ITEM reference.
Returning the reference to the UIW_PULL_DOWN_ITEM object
allows chaining of the UIW_PULL_DOWN_ITEM::operator—
overload operator.

e item,, is a pointer to the UIW_POP_UP_ITEM object or the object

derived from the UIW_POP_UP_ITEM base class that is to be
removed from the pull-down item’s list of pop-up items.

Chapter 39 — UIW_PULL_DOWN_ITEM 303

304

Example

#include <ui_win.hpp>
ExampleFunctioni ()
{

// Create a pull-down menu with menu items.
UIW_PULL DOWN_MENU *menu = new UIW_PULL_DOWN_MENU(O,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
UIW_PULL DOWN_ITEM *item1 = new UIW_PULL_DOWN_ITEM(" Item~1 *,
MNF_NO_FLAGS, 0);
*item1
+ new UIW_POP_UP_ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW POP_UP_ITEM(¥Option 1.2", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

UIW_PULL DOWN_ITEM *item2 = new UIW_PULL_DOWN_ITEM(" Item~2 *
MNF_NO_FLAGS, 0);

UIW_POP_ UP_ITEM *item21 = new UIW_POP_UP_ITEM('Option 2.1",
MNIF_NO_FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

item2 + Item21;

[}

// Attach the menu to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ &(*menu + item1 + item2);

}/ Remove the "Option 2.1" item.
*item2 - item21;

Zinc Interface Library - Programmer’s Reference

CHAPTER 40 - UIW_PULL_DOWN_MENU

Overview The UIW_PULL_DOWN_MENU class object is used as a controlling
structure for a set of related menu items. The items in this menu are
displayed across a single, horizontal line. The figures below show
graphic and textual implementations of a UIW_PULL_DOWN_MENU
class object with three pull-down items (shown as “Item1,” “Item2” and
“Item3”):

r[e] [Sample menus] [4)[1]5
Item1 Item2 Item3
Pop-up menu........ [Option 1]
[Option 2) A pull-down menu
[Option 3] is shown at the
[Option 4] top of the window.
[Option 5]

The public members of the UIW_PULL_DOWN_MENU class (declared
in UI_WIN.HPP) are:

class UIW_PULL_DOWN_MENU : public UIW_WINDOW

public:
UIW_PULL_DOWN_MENU(int indentation, USHORT woFlags,
USHORT woAdvancedFlags);
virtual “UIW_PULL_DOWN_MENU(void);

Chapter 40 - UIW_PULL_DOWN_MENU 305

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

i

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

}i

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);
};

class UIW_WINDOW : public UI_WINDOW_OBJECT

{

public:
void Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *First(void);
UI_WINDOW_OBJECT *Last(void)
void Subtract(UI_WINDOW_OBJECT *object);

UIW_WINDOW &operator + (void *object);
UIW_WINDOW &operator - (void *object);
};

class UIW_PULL_DOWN_MENU : public UIW_WINDOW;
See also The example file XWMENU.CPP, which gives a complete example of the
UIW_PULL_DOWN_MENU class.
“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_WINDOW?” of this manual, which describes the
base class from which the UIW_PULL_DOWN_ITEM class is derived.

306 Zinc Interface Library - Programmer’s Reference

“Chapter 37—UIW_POP_UP_MENU?” of this manual, which describes
a similar menu class that displays menu items vertically on the screen.

“Chapter 35—UIW_PULL_DOWN_ITEM” of this manual, which
describes the menu item class used by the pull-down menu.

UIW_PULL_DOWN_MENU::UIW_PULL_DOWN_MENU

Syntax #include <ui_win.hpp>

UIW_PULL_DOWN_MENU::UIW_PULL_DOWN_MENU(
int indentation, USHORT woFlags, USHORT woAdvancedFlags);

Remarks This constructor returns a pointer to anew UIW_PULL_DOWN_ITEM
class object.

NOTE: If the pull-down menu is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

* indentation;, is the indentation level where the first menu item
should begin. The indented space is shown as blank space in the
window.

* woFlags;, are flags (common to all window objects) that determine
the general operation of the pull-down menu. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_PULL_DOWN_MENU class object:

WOF_BORDER—Draws a single line border around the pull-
down menu.

WOF_NO_FLAGS—Does not associate any special flags with
the menu. This flag should not be used in conjunction with any
other WOF flag.

WOF_NON_SELECTABLE—Prevents the menu from being

selected. If this flag is set, the user will not be able to edit or
move within the menu.

Chapter 40 — UIW_PULL_DOWN_MENU 307

* woAdvancedFlags,, are flags that determine the advanced operation
of the menu.

WOAF_NO_FLAGS—Does not associated any special advanced
flags with the menu. Setting this flag allows the user to move,
size and interact with the menu in a normal fashion. This flag
should not be used in conjunction with any other WOAF flag.

WOAF_TEMPORARY—The pull-down menu only occupies the
screen temporarily. Once another window is selected from the
screen, the temporary menu is destroyed.

WOAF_NO_DESTROY—Prevents the window manager from
calling the pull-down menu’s destructor. If this flag is set, the
menu can be removed from the screen display, but the
programmer must call the associated destructor.

WOAF_MODAL—Prevents any other window from receiving
event information from the window manager. A modal window
receives all event information until it is removed from the
screen display.

WOAF_LOCKED—Prevents the window manager from
removing the menu from the screen display.

Example #include <ui_win.hpp>
ExampleFunction1()
{

// Create a pull-down menu with menu items.
UIW_PULL DOWN _MENU *menu = new UIW_PULL_DOWN_MENU (O,
"WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
menu
+ &(*new UIW PULL_DOWN ITEM(" Item~1 ", MNF_NO FLAGS,0)
+ new UIN _POP_UP_ITEM("Option 1.1*, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW_POP_UP_ITEM(™Option 1.2", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF _NO_FLAGS))
+ &(*new UIW PULL_DOWN ITEM(" Item™2 ", MNF_NO_FLAGS,0)
+ new UIN POP_UP_ITEM('Option 2.1",
MNIF_NO_FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS))
+ new UIW_PULL_DOWN_ITEM(" Item~3 ", MNF_NO_FLAGS,0)

308 Zinc Interface Library - Programmer’s Reference

// Attach the menu to a window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ menu;

UIW_PULL_DOWN_MENU:: ~ UIW_PULL_DOWN_MENU

Syntax #include <ui_win.hpp>

virtual UIW_PULL_DOWN_MENU::
~UIW_PULL_DOWN_MENU (void);

Remarks This virtual destructor destroys the class information associated with the
UIW_PULL_DOWN_MENU class object. Care should be taken to
only destroy those pull-down menus that are not automatically destroyed
by the parent window or the window manager.

Example #include <ui_win.hpp>
ExampleFunctioni()
{

// Create a pull-down menu with menu items.
UIW_PULL_DOWN_MENU *menu = new UIW_PULL_DOWN_MENU(O,
WOF_NO_FLAGS, WOAF_NO_FLAGS);
menu
+ &(*new UIW PULL_DOWN ITEM(" Item~1 ", MNF_NO FLAGS,0)
+ new UIW _POP_UP _ITEM("Option 1.1", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF NO_FLAGS)
+ new UIW _POP_UP_ITEM(®Option 1.2", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF NO_FLAGS))
+ &(*new UIW PULL_DOWN_ITEM(' Item~2 *, MNF_NO_FLAGS,0)
+ new UIW_POP_UP_ITEM(*Option 2.1,
MNIF _NO_FLAGS, BTF_NO._TOGGLE, WOF_NO FLAGS))
+ new UIW_PULL_DOWN_ITEM(* Item-3 *, MNF_NO_FLAGS,0)

// Attach the menu to the window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window
+ new BORDER
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)
+ menu;

Chapter 40 — UIW_PULL_DOWN_MENU 309

// Manually destroy the menu and its parent window.

*window - menu;

delete menu;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the menu object destructor.

310 Zinc Interface Library — Programmer’s Reference

CHAPTER 41 - UIW_STRING

Overview The UIW_STRING class is used to display string information to the
screen and to collect information, in string form, from an end user. The

figures below show graphic and textual implementations of a
UIW_STRING object:

String
Formatted strines. .

(o] [Sample strings] [4101]5
String. .oviiiiieane [Sample string]
Formatted strings.. [(801) 785-8900] [84602-0000]
TORL oo nsn »igislo. siiin

Sample text

The public members of the UIW_STRING class (declared in
UI_WIN.HPP) are:

class UIW_STRING : public UI_WINDOW_OBJECT, public UI_EDIT_INFO

{
public:
USHORT strFlags;

UIW_STRING(int left, int top, int width, char *string,
short maxLength, USHORT strFlags, USHORT woFlags,
int (*validate)(void *stringField, int ccode) = NULL);
virtual “UIW_STRING(void);

const char *DataGet(void);

void DataSet(char *string, int maxLength = -1);
};

Chapter 41 — UIW_STRING 311

312

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

};

class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);
};

class UI_EDIT_INFO

{
public:
static void UndoStrategy(short maxObjects, long maxBytes,
short maxUndos, long maxBytesPerObject,
short maxUndosPerObject) ;
};

class UIW_STRING :
public UI_WINDOW_OBJECT, public UI_EDIT_INFO;

The example file XWSTRING.CPP, which gives a complete example of
the UIW_STRING class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_STRING class is derived.

“Chapter 28—UIW_DATE” of this manual, which describes a class
derived from the UIW_STRING class.

Zinc Interface Library — Programmer’s Reference

“Chapter 43—UIW_TEXT” of this manual, which describes a class
derived from the UIW STRING class.

“Chapter 44—UIW_TIME” of this manual, which describes a ciass
derived from the UIW_STRING class.

UIW_STRING::UIW_STRING

Syntax #include <ui_win.hpp>

UIW_STRING::UIW_STRING(int left, int top, int width, char *string,
short maxLength, USHORT strFlags, USHORT woFlags,
int (*validate)(void *stringField, int ccode) = NULL);

Remarks This constructor returns a pointer to a new UIW_STRING class object.

NOTE: If the string window object is attached to a parent window, it
will automatically be destroyed when the parent window is destroyed.

e left;, and rop,, is the starting position of the string field within its
parent window.

e width,, is the width of the string field. (The height of the string
field is determined automatically by the UIW_STRING class
object.)

e string,,, is a pointer to the initial string to be displayed to the
screen. This pointer is used by the string object if the WOF_NO_-
ALLOCATE_DATA flag is set for the field. Otherwise, the string
is copied into a buffer, allocated by the UIW_STRING object,
which is maxLength in length.

e maxLength, is the maximum length of the string buffer.

o strFlags;, gives information on how to display the string information.
At present, only STF_NO_FLAGS is supported. This flag does not
associate any special flags with the UIW_STRING class object.

» woFlags,, are flags (common to all window objects) that determine
the general operation of the string object. The following flags

Chapter 41 — UIW_STRING 313

(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_STRING class object:

WOF_AUTO_CLEAR—Automatically clears the string buffer if
the end-user positions on the first character of the string field
(from another window field) then presses a key (without having
previously pressed any movement or editing keys).

WOF_BORDER—Draws a border around the string object. In
graphics mode, setting this option draws a single line border
around the object. In text mode, setting this option draws
display brackets (i.e., ‘[’]’) around the object.

WOF_INVALID—Sets the initial status of the string field to be
“invalid.” By default, all string information is valid. A
programmer may specify a string field as invalid by setting this
flag upon creation of the string object or by re-setting the flag
through the validate function (discussed below). For example,
a string field may initially be set to blank, but the final string
edited by the end-user must contain some instructional
information. In this case the initial string information does not
fulfill the programmer’s requirements.

WOF_NO_ALLOCATE_DATA—Prevents the string object from
allocating a string buffer that stores the string information. If
this flag is set, the programmer must allocate the string buffer
(passed as the string parameter) that is used by the string
object.

WOF_JUSTIFY_CENTER—Center-justifies the string inform-
ation within the string field.

WOF_JUSTIFY_RIGHT—Right-justifies the string information
within the string field.

WOF_NO_FLAGS—Does not associate any special flags with
the string object. In this case, the string buffer will be left-
justified. This flag should not be used in conjunction with any
other WOF flag.

314 Zinc Interface Library — Programmer’s Reference

WOF_NO_INVALID—Prevents the “Leave invalid” option from
being selectable by the end-user when an incomplete or invalid
string is entered.

WOF_NO_UNANSWERED—Prevents the “Leave unanswered”
option from being selectable by the end-user when an
incomplete or invalid string is entered.

WOF_NON_SELECTABLE—Prevents the string object from
being selected. If this flag is set, the end-user will not be able
to edit the string information.

WOF_UNANSWERED—Sets the initial status of the string field
to be “unanswered.” An unanswered string field is displayed as
blank space on the screen.

e validate, is a programmer defined function that is called whenever:

1—a string is entered and the user moves to a different field in
the form, or

2—the user moves to a different window on the screen.

The following arguments are passed to validate when string
information is entered:

Chapter 41 — UIW_STRING

stringField,,—A pointer to the UIW_STRING class object or
the class object derived from the UIW_STRING object base
class. This argument must be typecast by the programmer.

ccode,,—The logical or system code that caused the validate
function to be called. This code (declared in UI_EVT.HPP) will
be one of the following constant values:

S_CURRENT—The string object is about to be edited.
This code is sent before any editing operations are
permitted.

S_NON_CURRENT—A different field, or window, has been

selected. This code is sent after editing operations have
been performed.

315

The validate function’s returnValue should be 0 if the string is valid.
Otherwise, the programmer should call the error system with an
appropriate error message and return -1.

Example #include <ui_win.hpp>
ExampleFunction1()

// Add a string field to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER
+ new UIW TITLE(" Sample strings *, WOF JUSTIFY CENTER)
+ new UIW_PROMPT(2, 1, *String............. , WOF_NO_FLAGS)
+ new UIW STRING(22 1, 41, "Sample string", 256,

STF_NO_FLAGS, WOF BORDER)

UIW_STRING:: ~ UIW_STRING

Syntax #include <ui_win.hpp>

virtual UIW_STRING:: = UIW_STRING(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_STRING object. Care should be taken to only destroy those
string objects that are not attached to a parent window.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{

// Manually add a string field to the window.
UIW_STRING *stringField new UIW STRING(22, 1, 41,
“*Sample string", 256, STF _NO_FLAGS, WOF BORDER),

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;

*window
+ new UIW_BORDER
+ new UIW TITLE(" Sample strings ", WOF JUSTIFY CENTER)
+ new UIW PROMPT(2, 1, "String............. , WOF_NO_FLAGS)
+ stringField;

316 Zinc Interface Library — Programmer’s Reference

// Manually destroy the string field and its parent window.
*window - stringField;

delete stringField;

delete window;

// We could have just called "delete window." Its destructor
// would have automatically called the string object

// destructor.

UIW_STRING::DataGet

Syntax #include <ui_win.hpp>

const char *UIW_STRING::DataGet(void);

Remarks This function gets the current string information associated with the
UIW_STRING class object. This function returns a pointer to a
constant character array. Thus, the contents of the array cannot be
directly modified by the programmer.

e returnValue,, is a constant pointer to the string buffer.

Exan1p|e #include <ui_win.hpp>
%xampleFunction1()

// Manually add a string field to the window.
UIW_STRING 'stringField new UIW STRING(22, 1, 41,
“*Sample string", 256, STF_NO_FLAGS, WOF BORDER),

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
"WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW TITLE(" Sample strings ", WOF JUSTIFY CENTER)
+ new UIW PROMPT(2, 1, "String............. , WOF_NO_FLAGS)
+ stringField;

}/ Get the contents of the string buffer.
const char *buffer = stringField->DataGet();

Chapter 41 — UIW_STRING 317

UIW_STRING::DataSet

318

Syntax

Remarks

Example

#include <ui_win.hpp>

void UIW_STRING::DataSet(char *string, int maxLength = -1);

This function resets the current string information associated with the
UIW_STRING class object or tells the class object that key flags,
associated with the string object, have been changed.

® SITNg 0. iS @ pointer to the new string buffer. If the WOF_NO_-
ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the UIW_-
STRING class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_STRING class
object. If this argument is NULL, no string information is changed,
but the string field is re-displayed.

e maxLength,, is the new maximum length of the string buffer. If this
value is -1, the new value is ignored. If the new length is greater
than the old length and the WOF_NO_ALLOCATE_DATA flag is
not set, a new string buffer is allocated by the UIW_STRING class
object.

#include <ui_win.hpp>
ExampleFunctioni ()
{

// Manually add a string field to the window.
UIW_STRING *stringField = new UIW _STRING(22, 1, 41,
*Sample string®, 256, STF_NO_FLAGS, WOF_BORDER) ;

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
new UIW TITLE(" Sample strings ", WOF_JUSTIFY_CENTER)
new UIW PROMPT (2, 1, "String............. ", WOF_NO_FLAGS)
stringField;

++ +

}/ Reset the string field buffer but leave the old length.
stringField->DataSet("This is a new sample string.", -1);

Zinc Interface Library — Programmer’s Reference

CHAPTER 42 - UIW_SYSTEM_BUTTON

Overview The UIW_SYSTEM_BUTTON class is used to select general operations
on a window (e.g., size, move, maximize, minimize). The figures below
show graphic and textual implementations of a UIW_SYSTEM -
BUTTON class object (the button with the ‘o’ character):

<[] [General objects] [411T];5

The public members of the UIW_SYSTEM_BUTTON class (declared
in UI_WIN.HPP) are:

class UIW_SYSTEM_BUTTON : public UIW_BUTTON

public:
UIW_SYSTEM_BUTTON(void) ;
virtual “UTW_SYSTEM_BUTTON(void);

void Add(UIW_POP _UP_ITEM *item);
void Subtract(UIW_POP_UP_ITEM *item);

UIW_SYSTEM_BUTTON &operator + (UIW_POP_UP_ITEM *object);

) UIW_SYSTEM_BUTTON &operator - (UIW_POP_UP_ITEM *object);
’

Chapter 42 — UIW_SYSTEM_BUTTON 319

320

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

%lass UI_ELEMENT
public:

UI_ELEMENT *previous;
UI_ELEMENT *next;

class UI_WINDOW_OBJECT : public UI_ELEMENT
{
public:

b

static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

class UIW_BUTTON : public UI_WINDOW_OBJECT
{
public:

b

int depth;
USHORT btFlags;

const char *DataGet(void);
void DataSet(const char *string);

class UIW_SYSTEM_BUTTON : public UIW_BUTTON;

The example file XWGEN.CPP, which gives a complete example of the
UIW_SYSTEM_BUTTON class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 27—UIW_BUTTON?” of this manual, which describes the base
class from which the UIW_SYSTEM_BUTTON class is derived.

Zinc Interface Library - Programmer’s Reference

“Chapter 32—UIW_MAXIMIZE _BUTTON” of this manual, which
describes an additional class derived from the UIW_BUTTON class.

“Chapter 33—UIW_MINIMIZE BUTTON” of this manual, which
describes an additional class derived from the UIW_BUTTON class.

“Chapter 35—UIW_POP_UP_ITEM” of this manual, which describes
the class used in the system button’s pop-up menu.

UIW_SYSTEM_BUTTON::UIW_SYSTEM_BUTTON

Syntax #include <ui_win.hpp>

UIW_SYSTEM_BUTTON::UIW_SYSTEM_BUTTON void);

Remarks This constructor returns a pointer to a new UIW_SYSTEM_BUTTON
class object. The system button object always occupies the outer-most
left corner space available in the parent window. To ensure that the
system button is drawn correctly, it must be created right after the
UIW_MINIMIZE_BUTTON class object. The following example shows
the correct and incorrect order of system button creation:

1) // CORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
"WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
new UIW_BORDER
new UIW_MAXIMIZE BUTTON
new UIW _MINIMIZE BUTTON
new UIW_SYSTEM BUTTON
new UIW_TITLE(™Window 1°, WOF_JUSTIFY_CENTER)

B

2) // INCORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_SYSTEM BUTTON
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE BUTTON
new UIW_TITLE("Window 1*, WOF_JUSTIFY_CENTER)
new UIW_BORDER

-+ +

NOTE: If the system button object is attached to a parent window, it
will automatically be destroyed when the parent window is destroyed.

Chapter 42 — UIW_SYSTEM_BUTTON 321

Example #include <ui_win.hpp>
ExampleFunction1()

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);

UIW_SYSTEM_BUTTON:: ~ UIW_SYSTEM_BUTTON

Syntax #include <ui_win.hpp>

virtual UIW_SYSTEM_BUTTON::
~UIW_SYSTEM_BUTTON(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_SYSTEM_BUTTON object. Care should be taken to only destroy
system button objects that are not attached to a parent window.

Example #include <ui_win.hpp>
ExampleFunctioni ()

UIW_MAXIMIZE BUTTON *sysButton = new UIW_SYSTEM_BUTTON;

UIW_WINDOW *window = new UIW WINDOW(O, O, 40, 10,
WOF_NO_FLAGS, WOAF_NO_DESTROY) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

sysButton

new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER);

+++++

322 Zinc Interface Library - Programmer’s Reference

// Manually destroy the system button and its parent window.
*window - sysButton;

delete sysButton;

delete window;

// We could have just called "delete window." 1Its destructor
// would have automatically called the system button

// destructor.

UIW_SYSTEM_BUTTON::Add

Syntax

Remarks

Example

#include <ui_win.hpp>

void UIW_SYSTEM_BUTTON::Add(UIW_POP_UP_ITEM *item);

This function adds a new pop-up menu item to the UIW_SYSTEM_-
BUTTON class object.

item, is a pointer to the item to be added to the system button’s list
of menu items. The new item must be a UIW_POP_UP_ITEM
class object or a class object derived from the UIW_POP_UP_-
ITEM base class.

#include <ui_win.hpp>
%xampleFunction1()

// Create a window with the basic window objects.
UIW_SYSTEM_BUTTON *sysButton = new UIW_SYSTEM_BUTTON;
UIW_WINDOW *window = new UIW _WINDOW(O, 0, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
sysButton
new UIW_TITLE(*Window 1", WOF_JUSTIFY_CENTER) ;

++ + +

Chapter 42 — UIW_SYSTEM_BUTTON 323

// Add system button menu options.

UIW_POP_UP_ITEM *dualMonitor = new UIW POP_UP_ITEM(
*“Switch window", MNIF_NO_FLAGS, BTF_NO_TOGGLE,
WOF_NO_FLAGS) ;

sysButton->Add(dualMonitor);

sysButton->Add(new UIW_POP_UP_ITEM("~“Restore', MNIF_RESTORE,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

sysButton->Add(new UIW_POP_UP_ITEM(*~Move", MNIF_MOVE,
BTF_NO_TOGGLE, WOF_NO FLAGS) ;

sysButton->Add(new UIW_POP_UP_ITEM("~Size", MNIF_SIZE,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

UIW_SYSTEM_BUTTON::Subtract

324

Syntax

Remarks

Example

#include <ui_win.hpp>

void UIW_SYSTEM_BUTTON::Subtract(
UIW_POP_UP_ITEM *item),

This function removes a pop-up menu item from the UIW_SYSTEM -
BUTTON class object. This function does not call the destructor
associated with the menu item.

e item;, is a pointer to the item to be removed from the current
system button’s list of pop-up menu items. This argument must be
a UIW_POP_UP_ITEM class object or a class object derived from
the UIW_POP_UP_ITEM base class.

#include <ui_win.hpp>
ExampleFunctioni ()
{

// Create a window with the basic window objects.

UIW_SYSTEM BUTTON *sysButton = new UIW_SYSTEM_BUTTON;

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS);

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

sysButton

new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER);

++ 4+ ++

// Add system button menu options.

UIW_POP_UP_ITEM *dualMonitor = new UIW POP_UP ITEM(
"~“Switch window", MNIF_NO_FLAGS, BTF_NO_TOGGLE,
WOF_NO_FLAGS) ;

sysButton->Add(dualMonitor);

Zinc Interface Library - Programmer’s Reference

sysButton->Add(new UIW_POP_UP_ITEM("“Restore", MNIF_RESTORE,
BTF_NO_TOGGLE, WOF_NO FLAGS) ;

sysButton->Add(new UIW_POP_UP_ITEM("~“Move", MNIF_MOVE,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

sysButton->Add(new UIW_POP_UP_ITEM("~Size", MNIF_SIZE,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

// Remove the dual Monitor option if no longer supported.

extern int DualMonitorSupport(void);

if (!DualMonitorSupport())
sysButton->Subtract(dualMonitor);

UIW_SYSTEM_BUTTON::operator +

Syntax #include <ui_win.hpp>

UIW_SYSTEM_BUTTON &UIW_SYSTEM_BUTTON::
operator + (UIW_POP_UP_ITEM *item);

Remarks This overload operator is used to add menu items to the associated
system button menu. This operator overload is equivalent to calling the
UIW_SYSTEM_BUTTON::Add function, except that it allows the
chaining of menu item additions to the UIW_SYSTEM BUTTON
object.

e returnValue,, is the UIW_SYSTEM_BUTTON reference. Return-
ing the reference to the list allows chaining of the UIW_SYSTEM_-
BUTTON::operator+ overload operator.

e item,, is a pointer to the Ul_WINDOW_OBIJECT class or the
object derived from the UI_ WINDOW_OBJECT class that is to be
added to the system menu.

Example #include <ui_win.hpp>
ExampleFunctioni ()

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE BUTTON
+ new UIW_MINIMIZE_BUTTON

Chapter 42 — UIW_SYSTEM_BUTTON 325

+ &(*new UIW_SYSTEM BUTTON
+ new UIN_POP_UP_ITEM('~Restore", MNIF_RESTORE,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW_POP_UP_ITEM(™~Move", MNIF_MOVE,
| BTF_NO_TOGGLE, WOF_NO_FLAGS)
| + new UTW _POP_UP_ITEM(™-Size", MNIF_SIZE,
\
\

BTF_NO_TOGGLE, WOF_NO_FLAGS)

+ new UTW _POP_UP_ITEM(*Minimize", MNIF_MINIMIZE,
BTF_NO_TOGGLE, WOF_NO_FLAGS)

+ new UTW POP_UP_ITEM(™Ma®ximize", MNIF_MAXIMIZE,
BTF_NO_TOGGLE, WOF_NO_FLAGS)

+ new UIW_POP_UP_ITEM

+ new UIW_POP_UP_ITEM("~Close", MNIF_CLOSE,
BTF_NO_TOGGLE, WOF_NO FLAGS))

+ new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER);

UIW_SYSTEM_BUTTON::operator -

Syntax #include <ui_win.hpp>

UIW_SYSTEM_BUTTON &UIW_SYSTEM_BUTTON::
operator - (UIW_POP_UP_ITEM *item);

Remarks This overload operator removes a menu item object from the system
button’s list of menu items. This operator overload is equivalent to
calling the UIW_SYSTEM_BUTTON::Subtract function, except that it
allows the chaining of menu item subtractions from the UIW._-
SYSTEM_BUTTON class object.

e returnValue,, is the UIW_SYSTEM_BUTTON reference. Return-
ing the reference to the list allows chaining of the UIW_SYSTEM_-
BUTTON::operator- overload operator.

e object,, is a pointer to the Ul_WINDOW_OBIJECT class or the
object derived from the UI_ WINDOW_OBJECT class that is to be
removed from the system menu.

Example #include <ui_win.hpp>
ExampleFunction1()
// Create a window with basic window objects.
UIW_MINIMIZE BUTTON *sysButton = new UIW_SYSTEM_BUTTON;

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10,
"WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

326 Zinc Interface Library — Programmer’s Reference

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

sysButton

new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER);

+ 4+ ++

// Create the system button menu options.
UIW_POP_UP_ITEM *dualMonitor = new UIW POP_UP_ITEM(
"~Switch window", MNIF_NO_FLAGS, BTF_NO_TOGGLE,
WOF_NO_FLAGS) ;
*sysButton
+ dualMonitor
+ new UIW _POP_UP_ITEM("~Restore", MNIF_RESTORE,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UTW _POP_UP_ITEM(™-Move", MNIF_MOVE,
BTF_NO_TOGGLE, WOF _NO FLAGS)
+ new UTW _POP_UP_ITEM(™-Size", MNIF_SIZE,
BTF_NO_TOGGLE, WOF_NO_FLAGS) ;

// Remove the dual Monitor option if no longer supported.
extern int DualMonitorSupport(void);
if (!DualMonitorSupport())

*sysButton - dualMonitor;

Chapter 42 — UIW_SYSTEM_BUTTON 327

328 Zinc Interface Library — Programmer’s Reference

CHAPTER 43 - UIW_TEXT

Overview The UIW_TEXT class is used to display text information to the screen
and to collect information, in alphanumeric form, from an end user.

The figures below show graphic and textual implementations of a
UIW_TEXT class object:

(o] [sample strings] [410T1]
SEEIRG. TS [Sample string]
Formatted strings.. [(801) 785-8900] [84602-0000]

i 5 & S R e e

Sample text

The public members of the UIW_TEXT class (declared in
UI_WIN.HPP) are:

class UIW_TEXT : public UIW_STRING

{
public:
USHORT txtFlags;

UIW_TEXT(int left, int top, int width, int height,
char *text, short maxLength, USHORT txtFlags,
USHORT woFlags,

int (*validate)(void *textField, int ccode) = NULL);
virtual “UIW_TEXT(void);

const char *DataGet(void);

void DataSet(char *text, short maxLength = -1);
}

Chapter 43 — UIW_TEXT 329

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

H
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

i USHORT woFlags;

1 USHORT woStatus;

\ UI_REGION true;

‘ UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

}s
class UI_EDIT_INFO
‘ {
; public:
| static void UndoStrategy(short maxObjects, long maxBytes,
‘ short maxUndos, long maxBytesPerObject,

short maxUndosPerObject) ;
};

class UIW_STRING : public UI_WINDOW_OBJECT, public UI_EDIT_INFO
£
public:
USHORT strFlags;

void DataSet(char *string, int maxLength = -1);
}i

class UIW_TEXT : public UIW_STRING;

|
\
|
} const char *DataGet(void);
\

See also The example file XWSTRING.CPP, which gives a complete example of
the UIW_TEXT class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

330 Zinc Interface Library — Programmer’s Reference

“Chapter 41—UIW_STRING” of this manual, which describes the base
class from which the UIW_TEXT class is derived.

UIW_TEXT::UIW_TEXT

Syntax #include <ui_win.hpp>

UIW_TEXT::UIW_TEXT(int left, int top, int width, int height,
char *text, short maxLength, USHORT wxtFlags,
USHORT woFlags,
int (*validate)(void *textField, int ccode) = NULL);

Remarks This constructor returns a pointer to a new UIW_TEXT class object.

NOTE: If the text object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

e left,, and top,, is the starting position of the text field within its
parent window.

e width, is the width of the text field.

e height, is the height of the text field.

e text,,, is a pointer to the initial text to be displayed to the screen.
This pointer is used by the text object if the WOF_NO -
ALLOCATE_DATA flag is set for the field. Otherwise, the text is
copied into a buffer, allocated by the UIW_TEXT object, which is
maxLength in length.

e maxLength,, is the maximum length of the text buffer.

» wtFlags,, gives information on how to display the text information.

Currently, only TXF_NO_FLAGS is supported. This flag does not
associate any special flags with the UIW_TEXT class object.

Chapter 43 — UIW_TEXT 331

332

woFlags,, are flags (common to all window objects) that determine
the general operation of the text object. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_TEXT class object:

WOF_AUTO_CLEAR—Automatically clears the text buffer if
the end-user positions on the first character of the text field
(from another window field) and then presses a key (without
having previously pressed any movement or editing keys).

WOF_BORDER—Draws a single line border around the text
object.

WOF_INVALID—Sets the initial status of the text field to be
“invalid.” By default, all text information is valid. A
programmer may specify a text field as invalid by setting this
flag upon creation of the text object or by re-setting the flag
through the validate function (discussed below). For example,
a text field may initially be set to blank, but the final text field
edited by the end-user must contain some instructional text. In
this case the initial text information does not fulfill the
programmer’s requirements.

WOF_NO_ALLOCATE_DATA—Prevents the text object from
allocating a text buffer that stores the text information. If this
flag is set, the programmer must allocate the text buffer (passed
as the zext parameter) that is used by the text object.

WOF_NO_FLAGS—Does not associate any special flags with
the text object. This flag should not be used in conjunction
with any other WOF flag.

WOF_NON_FIELD_REGION—The text object is not a form
field. If this flag is set and the text is attached to a higher-level
window, then the left, top, height and width arguments are
ignored and the text occupies any remaining space within the
parent window.

WOF_NO_INVALID—Prevents the “Leave invalid” option from

being selectable by the end-user when incomplete or invalid text
is entered.

Zinc Interface Library — Programmer’s Reference

Chapter 43 — UIW_TEXT

WOF_NO_UNANSWERED—Prevents the “Leave unanswered”
option from being selectable by the end-user when incomplete
or invalid text is entered.

WOF_NON_SELECTABLE—Prevents the text object from
being selected. If this flag is set, the user will not be able to
edit or move within the text field.

WOF_UNANSWERED—Sets the initial status of the text field
to be “unanswered.” An unanswered text field is displayed as
blank space on the screen.

WOF_VIEW_ONLY—The text object cannot be edited. If this
flag is set, the end-user will not be able to edit the text
information but will be able to browse through the text field.

validate,, is a programmer defined function that is called whenever:

1—a text string is entered and the user moves to a different
field in the form, or

2—the user moves to a different window on the screen.

The following arguments are passed to validate when text
information is entered:

textField,,—A pointer to the UIW_TEXT class object or the
class object derived from the UIW_TEXT object base class.
This argument must be typecast by the programmer.

ccode,—The logical or system code that caused the validate
function to be called. This code (declared in UI_EVT.HPP) will
be one of the following constant values:

S_CURRENT—The text object is about to be edited. This
code is sent before any editing operations are permitted.

S_NON_CURRENT—A different field, or window, has been

selected. This code is sent after editing operations have
been performed.

333

The validate function’s refurnValue should be O if the text is valid.
Otherwise, the programmer should call the error system with an
appropriate error message and return -1.

Example #include <ui_win.hpp>
ExampleFunction1()

// Add a text field to the window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)

new UIW_PROMPT(2, 3, "Text....v.oeevis... *, WOF_NO_FLAGS)

new UIW TEXT(22, 3, 41, 4, "Sample text", 1028,
TXF_NO_FLAGS, WOF_BORDER) ;

+ 4+ +

}
ExampleFunction2()
{
// Add a text object to the window. Unlike ExampleFunctioni(),
// this text field occupies the remaining part of the window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)
+ new UIW PROMPT(2, 3, "TeXE v ivoeneuninris ", WOF_NO_FLAGS)
+ new UIW_TEXT(O0, O, O, O, “Sample text", 1028,
TXF_NO_FLAGS, WOF_NON_FIELD_REGION) ;
}

UIW_TEXT:: ~ UIW_TEXT

| Syntax #include <ui_win.hpp>

virtual UIW_TEXT:: ~ UIW_TEXT(void);

-; Remarks This virtual destructor destroys the class information associated with the
| UIW_TEXT object. Care should be taken to only destroy those text
" objects that are not attached to a parent window.

334 Zinc Interface Library — Programmer’s Reference

Example #include <ui_win.hpp>
ExampleFunction1 ()
{

// Manually add a text field to the window.
W_TEXT *text = new UIW TEXT(22, 3, 41, 4, "Sample text",
71028, TXF_NO_FLAGS, WOF BORDER),

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;
*window

+ new UIW_BORDER

+ new UIW_TITLE(*Window 1", WOF_JUSTIFY CENTER)

+ new UIW_PROMPT(2, 3, °"Text...ceesessnesns , WOF_NO_FLAGS)
+ text;

// Manually destroy the text object and its parent window.
*window - text;

delete text;

delete window;

// We could have just called "delete window." 1Its destructor
// would have automatically called the text object destructor.

UIW_TEXT::DataGet

Syntax #include <ui_win.hpp>
const char *UIW_TEXT::DataGet(void);
Remarks This function gets the current text information associated with the
UIW_TEXT class object. This function returns a pointer to a constant

character array. Thus, the contents of the array cannot be directly
modified by the programmer.

e returnValue,, is a constant pointer to the text buffer.

Chapter 43 — UIW_TEXT 335

Example

#include <ui_win.hpp>
ExampleFunction1()
{

// Manually add a text field to the window.

UIW_TEXT *text = new UIW TEXT(22, 3, 41, 4, "Sample text",
1028, TXF_NO_FLAGS, WOF_BORDER) ;

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,

“WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER
+ new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)
+-new UTW "PROMP T2 @, “TOXTH o' s v oo sy v o ", WOF_NO_FLAGS)
+ text;

}/ Get the contents of the buffer.
const char *buffer = text->DataGet();

UIW_TEXT::DataSet

336

Syntax

Remarks

#include <ui_win.hpp>

void UIW_TEXT::DataSet(char *fext, short maxLength = -1);

This function resets the current text information associated with the
UIW_TEXT class object or tells the class object that key flags,
associated with the text object, have been changed.

* lexty,, is a pointer to the new text buffer. If the WOF_NO _-
ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the
UIW_TEXT class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_TEXT class
object. If this argument is NULL, no text information is changed,
but the text field is re-displayed.

e maxLength,, is the new maximum length of the text buffer. If this
value is -1, the new value is ignored. If the new buffer length is
greater than the old length and the WOF_NO_ALLOCATE_DATA
flag is not set, a new text buffer is allocated by the UIW_TEXT
class object.

Zinc Interface Library — Programmer’s Reference

Example #include <ui_win.hpp>
ExampleFunction1()

// Manually add a text field to the window.

UIW_TEXT *text = new UIW TEXT(22, 3, 41, 4, "Sample text',
<1028, TXF_NO_FLAGS, WOF BORDER):

UIW_WINDOW *window = new UIW | WINDOW(O0, 0, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER
+ new UIW TITLE(*Window 1%, WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 3, "Text............... , WOF_NO_FLAGS)
+ text;

// Reset the text field buffer but 1eave the old length.
text->DataSet("This is new sample text. -1);

Chapter 43 — UIW_TEXT 337

338

Zinc Interface Library — Programmer’s Reference

CHAPTER 44 - UIW_TIME

Overview The UIW_TIME class is used to display time information to the screen
and to collect information, in time form, from an end user. It is not the
low-level time storage object. (See “Chapter 23—UI_TIME” of this
manual for information about the low-level time storage object.) The
pictures below show graphic and textual implementations of UIW_TIME
objects:

(Al ited ti
:shc.!)u be in Q“.h:

(] [Sample times] [1101];

Standard........... [5:45 P.M.
Twenty-four hour... [17:45

Colon & zero fill.. [05:45 P.M.
Seconds........... [5:45:43 P.M.

All edited times
should be in the
range

6:00am..10:00pm

— it St St

The public members of the UIW_TIME class (declared in
UI_WIN.HPP) are:

class UIW_TIME : public UIW_STRING

%
public:
UVIW_TIME(int left, int top, int width, UI_TIME *time,
char *range, USHORT tmFlags, USHORT woFlags,
int (*validate)(void *timeField, int ccode) = NULL);
virtual “UIW_TIME(void);

const UIW TIME *DataGet(void);
void DataSet(UIW_TIME *time);

Chapter 44 — UIW_TIME 339

340

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

;
class UI_WINDOW_OBJECT : public UI_ELEMENT

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW OBJECT *parent;
UI_DISPLAY *display;

UI_EVENT MANAGER *eventManager;
UI_WINDOW_MANAGER *windowManager ;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);
b
class UI_EDIT_INFO
{
public:
static void UndoStrategy(short maxObjects, long maxBytes,
short maxUndos, long maxBytesPerObject,

short maxUndosPerObject);
};

class UIW_STRING : public UI_WINDOW_OBJECT, public UI_EDIT_INFO

{
public:
USHORT strFlags;

const char *DataGet(void);
void DataSet(char *string, int maxLength = -1);

b
class UIW_TIME : public UIW_STRING;

The example file XWTIME.CPP, which gives a complete example of the
UIW_TIME class.

“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with
window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

Zinc Interface Library — Programmer’s Reference

“Chapter 23—UI_TIME?” of this manual, which describes the low-level
time storage class object.

“Chapter 28—UIW_DATE” of this manual, which describes a similar
high-level class object that stores date information.

“Chapter 41—UIW_STRING” of this manual, which describes the base
class from which the UIW_TIME class is derived.

UIW_TIME:UIW_TIME

Syntax #include <ui_win.hpp>

UIW_TIME::UIW_TIME(int left, int top, int width, UI_TIME *time,
char *range, USHORT tmFlags, USHORT woFlags,
int (*validate)(void *timeField, int ccode) = NULL);

Remarks This constructor returns a pointer to a new UIW_TIME class object.

NOTE: If the time window object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

e left, and top,, is the starting position of the time field within its
parent window.

e width, is the width of the time field. (The height of the time field
is determined automatically by the UIW_TIME class object.)

e time,,, is a pointer to the initial time value. If the WOF_NO_-
ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the UIW_-
TIME class object is destroyed.

* range,, is a string that gives the valid time ranges. For example, if
a range of “12:01pm..11:59:59pm” were specified, the UIW_TIME
class object would only accept those times whose values fell in the
post-meridian time. If range is NULL, any time value is accepted.
This string is copied by the UIW_TIME class object.

Chapter 44 — UIW_TIME 341

e tmFlags,, gives information on how to display and interpret the time
information. The following flags (declared in UI_GEN.HPP)
override the country dependant information (supplied by all DOS
based systems):

TMF_COLON_SEPARATOR—Separates each time variable
with a colon. Some example times with the TMF_COLON_-
SEPARATOR flag set are: "12:00," "13:00:00" and "12:00 a.m."

TMF_HUNDREDTHS—Includes the hundredths value in the
time. (By default the hundredths value is not included.)

TMF_LOWER_CASE—Converts the time to lower-case. Some
example times with the TMF_LOWER_CASE flag set are:
"12:00 p.m." and "1:00 a.m."

TMF_NO_FLAGS—Does not associate any special flags with
the UIW_TIME class object. In this case, the time will be
displayed and interpreted using the default country information.
This flag should not be used in conjunction with any other
TMF flag.

TMF_NO_HOURS—Does not display or interpret an hour
value for the UI_TIME object. For example, if time were
"12:15" and the TMF_NO_HOURS were set, the value “12”
would be interpreted as the minutes and “15” would be
interpreted as the seconds.

TMF_NO_MINUTES—Does not display or interpret a minute
value for the UIW_TIME class object. For example, if the end-
user entered the time "12:15" and the TMF_NO_MINUTES
were set, the displayed time would be interpreted as 12 seconds
and 15 hundredths of seconds.

TMF_NO_SEPARATOR—Does not wuse any separator
characters to delimit the time values. Some example times with
the TMF_NO_SEPARATOR flag set are: "1200" and "130000."

TMF_SECONDS—Includes the seconds value in the time. (By
default the seconds value is not included.)

342 Zinc Interface Library — Programmer’s Reference

Chapter 44 — UIW_TIME

TM_SYSTEM—Fills a blank time with the system time. For
example, if a blank ascii time value were entered by the end-
user and the TMF_SYSTEM flag were set, then the time would
be set to the current system time (e.g., "1:10pm").

TMF_TWELVE_HOUR—Forces the time to be displayed and
interpreted using a 12 hour clock, regardless of the default
country information. Some example times with the
TMF_TWELVE_HOUR flag set are: "12:00 a.m.," "1:00 p.m."
and "5:00 p.m."

TMF_TWENTY_FOUR_HOUR—Forces the time to be dis-
played and interpreted using a 24 hour clock, regardless of the
default country information. Some example times with the
TMF_TWENTY_FOUR_HOUR flag set are: "12:00," "13:00"
and "17:00."

TMF_UPPER_CASE—Converts the time to upper-case. Some
example times with the TMF_UPPER_CASE flag set are:
"12:00 PM." and "1:00 A.M."

TMF_ZERO_FILL—Forces the hour, minute and second values
to be zero filled when their values are less than 10. Some
example times with the TMF_ZERO_FILL flag set are: "01:10
a.m," "13:05:03" and "01:01 p.m."

woFlags,, are flags (common to all window objects) that determine
the general operation of the time object. The following flags
(declared in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_TIME class object:

WOF_AUTO_CLEAR—Automatically clears the time buffer if
the end-user positions on to the first character of the time field
(from another window field) and then presses a key (without
having previously pressed any movement or editing keys).

WOF_BORDER—Draws a border around the time object. In
graphics mode, setting this option draws a single line border
around the object. In text mode, setting this option draws
display braces (i.e., ‘[’]’) around the object.

343

344

WOF_INVALID—Sets the initial status of the time field to be
“invalid.” An invalid time fits in the absolute range determined
by the object type (i.e., “12:00pm..11:59:59pm”) but does not
fulfill all the requirements specified by the program. For
example, a time field may initially be set to “8:15am,” but the
final time, edited by the end-user, must be in the range
“12:00pm..11:59:59pm.” The initial time in this example fits the
absolute requirements of a UIW_TIME class object but does
not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the time informa-
tion within the time field.

WOF_JUSTIFY_RIGHT—RIight-justifies the time information
within the time field.

WOF_NO_ALLOCATE_DATA—Prevents the time object from
allocating a UI_TIME class object to store the time
information. If this flag is set, the programmer must allocate
the UI_TIME (passed as the time parameter) that is used by the
time object.

WOF_NO_FLAGS—Does not associate any special window flags
with the time object. Setting this flag left-justifies the time
information. This flag should not be used in conjunction with
any other WOF flags.

WOF_NO_INVALID—Prevents the “Leave invalid” option from
being selectable by the end-user when an incomplete or invalid
time value is entered.

WOF_NO_UNANSWERED—Prevents the “Leave unanswered”
option from being selectable by the end-user when an
incomplete or invalid time value is entered.

WOF_NON_SELECTABLE—Prevents the time object from
being selected. If this flag is set, the user will not be able to
edit the time information.

WOF_UNANSWERED—Sets the initial status of the time field

to be “unanswered.” An unanswered time field is displayed as
blank space on the screen.

Zinc Interface Library — Programmer’s Reference

validate,, is a programmer defined function that is called whenever:

1—a time string is entered and the user moves to a
different field in the form, or

2—the user moves to a different window on the screen.

The validate function is not called if the time does not fit the absolute
range for times or if the time is outside the default range (specified by
the range argument passed in on the UIW_TIME constructor). The
following arguments are passed to validate when a new time is entered:

timeField,,—A pointer to the UIW_TIME class object or the
class object derived from the UIW_TIME object base class.
This argument must be typecast by the programmer.

ccode,—The logical or system code that caused the validate
function to be called. This code (declared in UI_EVT.HPP) will
be one of the following constant values:

S_CURRENT—The time object is about to be edited. This
code is sent before any editing operations are permitted.

S_NON_CURRENT—A different field, or window, has been
selected. This code is sent after editing operations have
been performed, if the time is valid for the absolute value
of time field ranges and if the time is valid for the
programmer defined range.

The validate function’s returnValue should be 0 if the time is valid.
Otherwise, the programmer should call the error system with an
appropriate error message and return -1.

Example #include <ui_win.hpp>

ExampleFunctioni ()

Chapter 44 — UIW_TIME

// Add several time fields to the window.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

*window

+ new UIW_BORDER

+ new UIW_TITLE("Window 1", WOF_JUSTIFY_CENTER)

+ new UIW_PROMPT(2, 2, "Standard........... ", WOF_NO_FLAGS)
+ new UIW TIME(22, 2, 20, &time, "6:00am..10:00pm™,

+

TMF_NO_FLAGS, WOF_BORDER)
new UTW_PROMPT(2, 3, *Twenty-four hour...", WOF_NO_FLAGS)

345

+ new UIW TIME(22, 3, 20, &time, "6:00am..10:00pm",
TMF_TWENTY_FOUR_HOUR, WOF_BORDER)

+ new UTW_PROMPT(2, 4, "Colon & zero fill..", WOF_NO_FLAGS)

+ new UIW TIME(22, 4, 20, &time, "6:00am..10:00pm",
TMF_COLON_SEPARATOR | TMF_ZERO_FILL, WOF_BORDER);

UIW_TIME:: ~ UIW_TIME

346

Syntax

Remarks

Example

#include <ui_win.hpp>

virtual UIW_TIME:: ~ UIW_TIME(void);

This virtual destructor destroys the class information associated with the
UIW_TIME object. Care should be taken to only destroy those time
objects that are not attached to a parent window.

#include <ui_win.hpp>
ExampleFunctioni()
{

UI DATE date; // system date

UIW_DATE *dateField = new UIW _DATE(9, 1, 20, &date,
**, DTF_ALPHA_MONTH | DTF_SYSTEM, WOF_BORDER);

UI_TIME time; // system time

UIW_TIME *timeField = new UIW TIME(9, 1, 20, &time,
**, TMF_SECONDS, WOF_BORDER) ;

// Create a window with system date and time information.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11, WOF_NO_FLAGS,
“WOAF_NO_DESTROY) ;

*window

+ new UIW_BORDER

+ new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)
+ new UIW PROMPT(2, 1, "Date..", WOF_NO_FLAGS)
+ dateField

+ new UIW_PROMPT(2, 1, "Time..", WOF_NO_FLAGS)
+ timeField;

// Manually destroy the time field and its parent window.
*window - timeField;

delete timeField;

delete window;

// We could have just called “"delete window." Its destructor
// would have automatically called the time object destructor.

Zinc Interface Library — Programmer’s Reference

UIW_TIME::DataGet

Syntax #include <ui_win.hpp>

const UI_TIME *UIW_TIME::DataGet(void);

Remarks This function gets the current time information associated with the
UIW_TIME class object. This function returns a pointer to a constant
UI_TIME variable. Thus, the contents of this variable cannot be

directly modified by the programmer.

e retumValue,, is a constant pointer to the UI_TIME variable.

Examp|e #include <ui_win.hpp>
%xampleFunct10n1()

Chapter 44 — UIW_TIME

UI DATE date; // system date

UIW_DATE *dateField = new UIW DATE(9, 1, 20, &date,
"*, DTF_ALPHA_MONTH | DTF_SYSTEM, WOF_BORDER) ;

UI_TIME time; // system time

UIW_TIME *timeField = new UIW TIME(9, 2, 20, &time,
**, TMF_SECONDS, WOF_BORDER) ;

// Create a window with system date and time information.
UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW TITLE(*Window 1", WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Date.."', WOF_NO_FLAGS)
+ dateField
+ new UIW_PROMPT (2, 2, "Time..", WOF_NO_FLAGS)
+ timeField;

}/ Reset the date and time information.
extern int ResetDateTime(void);
%f (ResetDateTime())

date.Import(); // Get the new system date.
time.Import(); // Get the new system time.
dateField->DataSet (&date);
timeField->DataSet (&time);

else

date
time

*dateField->DataGet();
*timeField->DataGet();

347

UIW_TIME::DataSet

348

Syntax

Remarks

Example

#include <ui_win.hpp>

void UIW_TIME::DataSet(UI_TIME *time),

This function resets the current time information associated with the
UIW_TIME class object or is used to tell the class object that key flags,
associated with the time object, have been changed.

time,,,,, is a pointer to the new time information. If the WOF _-
NO_ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the
UIW_TIME class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_TIME class
object. If this argument is NULL, no time information is changed,

but the time field is re-displayed.

#include <ui_win.hpp>
ExampleFunctioni ()
{

UI DATE date; // system date

UIW_DATE *dateField = new UIW_DATE(9, 1, 20, &date,
** DTF_ALPHA_MONTH | DTF_SYSTEM, WOF_BORDER) ;

UI TIME time; // system time

UIW_TIME *timeField = new UIW TIME(9, 2, 20, &time,
**, TMF_SECONDS, WOF_BORDER);

// Create a window with system date and time information.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

+ new UIW_BORDER

+ new UIW TITLE("Window 1", WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Date..*; WOF_NO_FLAGS)
+ dateField

+ new UIW_PROMPT(2, 2, "Time..", WOF_NO_FLAGS)
+ timeField;

Zinc Interface Library — Programmer’s Reference

// Reset the date and time information.
extern int ResetDateTime(void);

if (ResetDateTime())

{

date.Import(); // Get the new system date.
time.Import(); // Get the new system time.
dateField->DataSet (&date);
timeField->DataSet (&time) ;

}
else

date
time

*dateField->DataGet();
*timeField->DataGet();

Chapter 44 — UIW_TIME 349

350 Zinc Interface Library - Programmer’s Reference

CHAPTER 45 - UIW_TITLE

Overview The UIW_TITLE class is used to display short textual information
about the parent window and, when clicked on with a mouse, to move
the position of the parent window. The figures below show graphic and
textual implementations of a window with a UIW_TITLE class object
(shown with the “General objects” string):

=[] [General objects] (L]

The public members of the UIW_TITLE class (declared in
UI_WIN.HPP) are:

class UIW_TITLE : public UI_WINDOW_OBJECT

{
public:
UIW_TITLE(char *title,
USHORT woFlags = WOF_JUSTIFY_CENTER) ;
virtual “UIW_TITLE(void);

const char *DataGet(void);

} void DataSet(char *title);
)

Chapter 45 — UIW_TITLE 351

Inheritance The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

3
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW_OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

b
class UIW_TITLE : public UI_WINDOW_OBJECT;

See also The example file XWGEN.CPP, which gives a complete example of the
UIW_TITLE class.
“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBIJECT” of this manual, which describes
the base class from which the UIW_TITLE class is derived.

352 Zinc Interface Library — Programmer’s Reference

UIW_TITLE::UIW_TITLE

Syntax #include <ui_win.hpp>

UIW_TITLE::UIW_TITLE(char *title,

USHORT woFlags = WOF_JUSTIFY_CENTER);

Remarks This constructor returns a pointer to a new UIW_TITLE class object.

NOTE: If the title window object is attached to a parent window, it will
automatically be destroyed when the parent window is destroyed.

e title is the window’s title.

Chapter 45 — UIW_TITLE

woFlags,, are flags (common to all window objects) that determine
the general presentation of the title object. The following flags
(declared in UI_WIN.HPP) control the general presentation of a
UIW_TITLE class object:

WOF_JUSTIFY_CENTER—Center-justifies the string inform-
ation within the title.

WOF_JUSTIFY_RIGHT—Right-justifies the string information
within the title.

WOF_NO_ALLOCATE_DATA—Prevents the title object from
allocating a string buffer to store the title information. If this
flag is set, the programmer must allocate the string buffer
(passed as the sitle parameter) that is used by the title object.

WOF_NO_FLAGS—Does not associate any special window flags
with the title object. Setting this flag left-justifies the title
information. This flag should not be used in conjunction with
any other WOF flags.

353

Example #include <ui_win.hpp>
ExampleFunction1()

// Create a basic window.

UIW_WINDOW *window = new UIW WINDOW(O, O, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER);

+ 4+ ++

UIW_TITLE:: ~ UIW_TITLE

Syntax #include <ui_win.hpp>

virtual UIW_TITLE:: ~ UIW_TITLE(void);

Remarks This virtual destructor destroys the class information associated with the
UIW_TITLE object.

Example #include <ui_win.hpp>
ExampleFunctioni()
{

// Manually add a title to the window.

UIW_TITLE *title = new UIW_TITLE("Window 1",
WOF JUSTIFY_CENTER) ;

UIW_WINDOW *window = new UIW WINDOW(O, O, 40, 10,
“WOF_NO_FLAGS, WOAF_NO_DESTROY) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM_BUTTON

title;

++ + 4+

// Manually destroy the title and its parent window.

*window - title;

delete title;

delete window;

// We could have just called "delete window."' Its destructor
// would have automatically called the title object destructor.

354 Zinc Interface Library — Programmer’s Reference

UIW_TITLE::DataGet

Syntax

Remarks

Example

the UIW_TITLE class object.

#include <ui_win.hpp>

const char *UIW_TITLE::DataGet(void);

This function is used to get the current title information associated with
This function returns a pointer to a
constant character buffer. Thus, the contents of this buffer cannot be
directly modified by the programmer.

returnValue,,, is a constant pointer to the title’s character buffer.

#include <ui_win.hpp>
%xampleFunction1()

// Manually add a title to the window.

UIW_TITLE *titleField = new UIW_TITLE(*Window 1",
"WOF_JUSTIFY_CENTER) ;

UIW_WINDOW *window = new UIW | WINDOW(O, 0, 40, 10,
“"WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window
+ new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

titleField;

+++ +

// Check the window’s title.

char title[128];

extern int ModifyTitle(char *title);

if (ModifyTitle(title))
titleField->dataSet(title);

else
strcpy(title, titleField->dataGet());

UIW_TITLE::DataSet

Syntax

Remarks

#include <ui_win.hpp>

void UIW_TITLE::DataSet(const char *itle);

Chapter 45 — UIW_TITLE

This function is used to reset the current title information associated

355

356

Example

with the UIW_TITLE class object or to tell the class object that key
flags, associated with the title object, have been changed.

o title,,,, is a pointer to the new title. If the WOF NO_-
ALLOCATE_DATA flag is set, this argument must be space,
allocated by the programmer, that is not destroyed until the UIW_-
TITLE class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_TITLE class
object. If this argument is NULL, no title information is changed,
but the title is re-displayed.

#include <ui_win.hpp>
?xampleFunct10n1()

// Manually add a title to the window.

UIW_TITLE *titleField = new UIW_TITLE('Window 1",
“WOF_JUSTIFY_CENTER) ;

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

titleField;

++ 4+

// Check the window’s title.
char title[128];
extern int ModifyTitle(char *title);
if (ModifyTitle(title))
i titleField->dataSet(title);
else
strcpy(title, titleField->dataGet());

Zinc Interface Library - Programmer’s Reference

CHAPTER 46 - UIW_WINDOW

Overview The UIW_WINDOW class is used as the controlling object for window
fields that are to be displayed on the screen. The figures below show
graphic and textual implementations of a UIW_WINDOW class object
with several attached window objects (i.e., border, buttons, title):

[e] [General objects] (41t

The public members of the UIW_WINDOW class (declared in
UI_WIN.HPP) are:

class UIW_WINDOW : public UI_WINDOW_OBJECT

ublic:

v UIW_WINDOW(int left, int top, int width, int height,
USHORT woFlags, USHORT woAdvancedFlags,
int helpContext = NO_HELP_CONTEXT);

virtual “UIW_WINDOW(void);

void Add(UI_WINDOW OBJECT *object);
UI_WINDOW_OBJECT *First(void);
UI_WINDOW_OBJECT *Last (void)

voId Subtract(UI_WINDOW_OBJECT *object);

UIW_WINDOW &operator + (void *object);

UIW_WINDOW &operator - (void *object);
};

Chapter 46 — UIW_WINDOW 357

358

Inheritance

See also

The programmer should be aware of the following inherited member
functions and variables:

class UI_ELEMENT

{

public:
UI_ELEMENT *previous;
UI_ELEMENT *next;

Y
class UI_WINDOW_OBJECT : public UI_ELEMENT

{

public:
static UI_EVENT_MAP *eventMapTable;
static int defaultDepth;

USHORT woFlags;

USHORT woStatus;

UI_REGION true;

UI_WINDOW OBJECT *parent;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW MANAGER *windowManager;
UI_PALETTE_MAP *paletteMapTable;

UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);
};

class UIW_WINDOW : public UI_WINDOW_OBJECT;
The example file XWGEN.CPP, which gives a complete example of the
UIW_WINDOW class.
“Chapter 2—Conceptual Design” of the Programmer’s Guide, which
gives an overview to the window manager and its interaction with

window objects.

“Chapter 3—Window Objects” of the Programmer’s Guide, which gives
information about individual window class objects.

“Chapter 25—UI_WINDOW_OBJECT” of this manual, which describes
the base class from which the UIW_WINDOW class is derived.

“Chapter 25—UIW_LIST” of this manual, which describes a class object
derived from the UIW_WINDOW class.

“Chapter 31—UIW_MATRIX” of this manual, which describes a class
object derived from the UIW_WINDOW class.

“Chapter 36—UIW_POP_UP_MENU?” of this manual, which describes
a class object derived from the UIW_WINDOW class.

Zinc Interface Library - Programmer’s Reference

“Chapter 40—UIW_PULL_DOWN_MENU” of this manual, which
describes a class object derived from the UIW_WINDOW class.

UIW_WINDOW::UIW_WINDOW

Syntax #include <ui_win.hpp>

UIW_WINDOW::UIW_WINDOW(int left, int top, int width,
int height, USHORT woFlags, USHORT woAdvancedFlags,
int helpContext = NO_HELP_CONTEXT);,

Remarks This constructor returns a pointer to a new UIW_WINDOW class
object.

NOTE: If the window is attached to the window manager, it will
automatically be destroyed when the window manager is destroyed.

e left, and top, is the starting position of the window on the screen
display.

e width, is the width of the window.
e height, is the height of the window.

e woFlags,, are flags (common to all window objects) that determine
the general operation of the window. The following flags (declared
in UI_WIN.HPP) control the general presentation of, and
interaction with, a UIW_WINDOW class object:

WOF_BORDER—Draws a single line border around the
window..

WOF_NO_FLAGS—Does not associate any special flags with
the window. This flag should not be used in conjunction with
any other WOF flag.

WOF_NON_SELECTABLE—Prevents the window from being

selected. If this flag is set, the user will not be able to edit or
move within the window.

Chapter 46 — UIW_WINDOW 359

360

woAdvancedFlags;, are flags that determine the advanced operation
of the window object. The following flags (declared in
UI_WIN.HPP) can only be set by advanced window objects (e.g.,
UIW_WINDOW, UIW_MATRIX, UIW_PULL_DOWN_MENU):

WOAF_NO_FLAGS—Does not associated any special advanced
flags with the window object. Setting this flag allows the user
to move, size and interact with the window in a normal fashion.
This flag should not be used in conjunction with any other
WOAF flag.

WOAF_TEMPORARY—The window only occupies the screen
temporarily. Once another window is selected from the screen,
the temporary window is destroyed.

WOAF_NO_DESTROY—Prevents the window manager from
calling the window’s destructor. If this flag is set, the window
can be removed from the screen display, but the programmer
must call the destructor associated with the window object.

WOAF_NO_SIZE—Prevents the end-user from changing the
size of the window during an application.

WOAF_NO_MOVE—Prevents the end-user from changing the
screen location of the window during an application.

WOAF_MODAL—Prevents any other window from receiving
event information from the window manager. A modal window
receives all event information until it is removed from the
screen display.

WOAF_LOCKED—Prevents the window manager from
removing the window from the screen display.

helpContext,, is the help information associated with the window.
This specifies the type of help that will be presented by the help
system when the help key is pressed and the end-user is viewing the
specified window. (For more information about the help system
and help context information see“Chapter 15—UI_HELP -
SYSTEM?” of this manual.)

Zinc Interface Library — Programmer’s Reference

Example

#include <ui_win.hpp>
ExampleFunctioni()
{

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window

+ new UIW_BORDER

+ new UIW MAXIMIZE_BUTTON

+ new UIW_MINIMIZE BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW TITLE(™Window 1", WOF_JUSTIFY_CENTER);
extern UI_WINDOW_MANAGER *_windowManager;
*_windowManager + window;

ExampleFunction2()
{

// Create a window with basic window objects. This is the same
// code as above, but the window is attached directly to the
// screen display.
extern UI_WINDOW_MANAGER *_windowManager;
*_windowManager
+ &(*new UIW_WINDOW(O, 1, 67, 11, WOF_NO_FLAGS,
WOAF_NO_FLAGS)
new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER));

+ 4+ ++

UIW_WINDOW:: ~ UIW_WINDOW

Syntax

Remarks

#include <ui_win.hpp>
virtual UIW_WINDOW:: ~ UIW_WINDOW(void);
This virtual destructor destroys the class information associated with the

UIW_WINDOW object. Care should be taken to only destroy those
windows that are not attached to the window manager.

Chapter 46 — UIW_WINDOW 361

Example #include <ui_win.hpp>

ExampleFunctioni ()

{
extern UI_WINDOW_MANAGER *_windowManager;

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM BUTTON
+ new UIW_TITLE(™ General objects ", WOF_JUSTIFY_CENTER);
*windowManager + window;
// Remove the window from the screen display then destroy it.
*windowManager - window;
delete window;
/- /o NOTEL I T the window had been created with WOAF_NO_FLAGS, the
// window manager would automatically call the
// window’s destructor
}
UIW_WINDOW::Add
Syntax #include <ui_win.hpp>
void UIW_WINDOW::Add(UI_WINDOW_OBJECT *object);
Remarks This function adds a new window object to the UIW_WINDOW class
object.

e object, is a pointer to the object to be added to the current
window’s list of window objects. This argument must be a class
object derived from the UL_WINDOW_OBIJECT base class.

Example #include <ui_win.hpp>

362

ExampleFunctioni ()
{

extern UI_WINDOW_MANAGER *_windowManager;

// Create a window with basic window objects.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
“WOF_NO_FLAGS, WOAF_NO FLAGS);

UIW_BORDER ™ *border = new UIW_BORDER;

UIW_MAXIMIZE_BUTTON *maxButton = new UIW_MAXIMIZE BUTTON;

UIW_MINIMIZE_BUTTON *minButton = new UIW_MINIMIZE BUTTON;

UIW_SYSTEM_BUTTON *sysButton = new UIW_SYSTEM BUTTON;

Zinc Interface Library — Programmer’s Reference

window->Add(border) ;

window->Add(maxButton) ;

window->Add(minButton) ;

window->Add(sysButton);

window->Add(new UIW TITLE('Window 1", WOF_JUSTIFY_CENTER));

UIW_WINDOW::First

Syntax

Remarks

Example

#include <ui_win.hpp>

UI_WINDOW_OBJECT *UIW_WINDOW::First(void);

This advanced function returns a pointer to the first window object in
the window’s list of window objects.

returnValue,,,, is a pointer to the first window object in the window’s
list of window objects.

#include <ui_win.hpp>
%xampleFunction1()

// Create a new window.
UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;
*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW SYSTEM BUTTON
+ new UIW_TITLE(™Window 1*, WOF_JUSTIFY_CENTER);

// See if any fields are invalid.

int invalidFields = FALSE;

for (UI_WINDOW_OBJECT ‘object = window->First();
object; object = object->Next())
if (FlagSet(object->woStatus, WOS_INVALID))

invalidFields = TRUE;
break;

Chapter 46 — UIW_WINDOW 363

UIW_WINDOW::Last

Syntax

Remarks

Example

#include <ui_win.hpp>

UI_WINDOW_OBJECT *UIW_WINDOW::Last(void);

This function returns a pointer to the last window object in the
window’s list of window objects.

» returnValue,, is a pointer to the last window object in the window’s
list of window objects.

#include <ui_win.hpp>
ExampleFunctioni ()
{

// Create a new window.

UIW_WINDOW *window = new UIW_WINDOW(O, O, 40, 10, WOF_NO_FLAGS,
“WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM BUTTON

new UIW_TITLE(™Window 1*, WOF_JUSTIFY_CENTER);

+ 4+ 4+ + +

// See if any fields are invalid.

int invalidFields = FALSE;

for (UI_WINDOW_OBJECT *object = window->Last();
object; obJect = object->Previous())
if (FlagSet(object->woStatus, WOS_INVALID))

invalidFields = TRUE;
break;

UIW_WINDOW::Subtract

364

Syntax

Remarks

#include <ui_win.hpp>

void UIW_WINDOW::Subtract(UI_WINDOW_OBJECT *object);

This function removes an object from the UITW_WINDOW class object.
This function does not call the destructor associated with the object.

Zinc Interface Library — Programmer’s Reference

e object, is a pointer to the object to be removed from the current
window’s list of window objects. This argument must be a class
object derived from the UI_WINDOW_OBJECT base class.

Example #include <ui_win.hpp>
?xampleFunct10n1()
extern UI_WINDOW_MANAGER *_windowManager;

// Create a window with basic window objects.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

UIW_BORDER *border = new UIW_BORDER;

UIW_MAXIMIZE_BUTTON *maxButton = new UIW_MAXIMIZE_BUTTON;

UIW_MINIMIZE BUTTON *minButton = new UIW_MINIMIZE BUTTON;

UIW_SYSTEM_BUTTON *sysButton = new UIW_SYSTEM_BUTTON;

window->Add(border) ;

window->Add(maxButton) ;

window->Add(minButton);

window->Add(sysButton);

window->Add(new UIW TITLE(‘Window 1", WOF_JUSTIFY_CENTER)) ;

}/ Remove the buttons if no selection can be made.
extern int RemoveButtons(void);
if (RemoveButtons())

window->Subtract(maxButton);
window->Subtract(minButton) ;
window->Subtract(sysButton);

}

UIW_WINDOW::operator +

Syntax #include <ui_win.hpp>

UIW_WINDOW &UIW_WINDOW::
operator + (UI_WINDOW_OBJECT *object);

Remarks This overload operator adds a window object to the UIW_WINDOW
object. This operator overload is equivalent to calling the UIW._-
WINDOW::Add function, except that it allows the chaining of window
object additions to the UIW_WINDOW object.

Chapter 46 — UIW_WINDOW 365

UIW_WINDOW::

Example

returnValue,,, is the UIW_WINDOW reference. Returning the
reference to the UIW_WINDOW object allows chaining of the
UIW_WINDOW::operator+ overload operator.

object,, is a pointer to the window object derived from the
UI_WINDOW_OBJECT base class that is to be added to the
window’s list of window objects.

#include <ui_win.hpp>
%xampleFunction1()

// Create a window with basic window objects.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

*window

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE BUTTON

+ new UIW_SYSTEM BUTTON

+ new UIW_TITLE(™Window 1", WOF_JUSTIFY_CENTER) ;

+ +

/! Add the window to the screen display.
extern UI_WINDOW_MANAGER * windowManager;
*windowManager + window;

operator -

366

Syntax

Remarks

#include <ui_win.hpp>

UIW_WINDOW &UIW_WINDOW::

operator — (UI_WINDOW_OBJECT *object);

This overload operator removes a window object from the window’s list
of objects. This operator overload is equivalent to calling the
UIW_WINDOW::Subtract function, except that it allows the chaining of
window object subtractions from the UIW_WINDOW class object.

. retumVa-IueOut is the UIW_WINDOW reference. Returning the

reference to the window allows chaining of the UTW_WINDOW::
operator- overload operator.

Zinc Interface Library - Programmer’s Reference

e object, is a pointer to the window object derived from the
UI_WINDOW_OBIJECT base class that is to be removed from the
window’s list of objects.

Example #include <ui_win.hpp>
ExampleFunctioni ()
{
extern UI_WINDOW_MANAGER *_windowManager;

// Create a window with basic window objects.

UIW_WINDOW *window = new UIW _WINDOW(O, 1, 67, 11,
“WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

UIW_BORDER *border = new UIW_BORDER;

UIW_MAXIMIZE_BUTTON *maxButton = new UIW_MAXIMIZE BUTTON;

UIW_MINIMIZE BUTTON *minButton = new UIW _MINIMIZE BUTTON;

UIW_SYSTEM_BUTTON *sysButton = new UIW_SYSTEM_BUTTON;

*window

border

maxButton

minButton

sysButton

new UIW_TITLE(*Window 1", WOF_JUSTIFY_CENTER);

+

+
+
+
+

}/ Remove the buttons if no selection can be made.
extern int RemoveButtons(void);
if (RemoveButtons())

*window - maxButton;

*window - minButton;
*window - sysButton;

Chapter 46 — UIW_WINDOW 367

368

Zinc Interface Library - Programmer’s Reference

INDEX

+ operator 116, 148, 184, 302,
325, 365

— operator 117, 149, 185, 303,
326, 365

< operator 35, 175

== operator 35, 176

> operator 34, 174

_backgroundPalette 158

_errorPaletteMapTable 159

_errorSystem 89

_helpSystem 127

_normalPaletteMapTable 159

A

Add 109, 140, 180, 300, 323, 362
attrib 157

B

Bitmaps 45, 231

Border 187, 197

Button 188, 201
maximize 249
minimize 253
system 319

C

char
signed 261
unsigned 261
Compare function 243
Cursor device 17, 37

Index

D

DataGet 207, 217, 228, 238, 266, 317,
335, 347, 355

DataSet 208, 218, 229, 239, 267, 318,
336, 348, 355

Date 21, 187, 209

packed 22, 25, 29

delete operator 15, 19, 44, 66, 86, 90,
95, 108, 128, 134, 139, 155,
168, 179, 200, 206, 217, 227,
236, 246, 252, 256, 265, 274,
281, 288, 294, 299, 309, 316,
322, 334, 346, 354, 361

double 261

E

Edit information 81
Edit mask 223
Error codes

UI_DATE 30
Error system 89

default 90

window 93
Event manager 105
Event mapping 119
Events 99

&

float 261

Format flags
UI_DATE 23, 26, 31
UL_TIME 167, 170, 173
UIW_BUTTON 204

369

UIW_DATE 212
UIW_ICON 234
UIW_MATRIX 244
UIW_NUMBER 262
UIW_POP_UP_ITEM 271
UIW_POP_UP_MENU 279
UIW_POP_UP_WINDOW
286
UIW_PULL_DOWN_ITEM
297
UIW_STRING 313
UIW_TEXT 331
UIW_TIME 342
Formatted string 188, 221

G

GENHELPEXE 132

Global variables
_backgroundPalette 158
_errorPaletteMapTable 159
_errorSystem 89
_helpPaletteMapTable 159
_helpSystem 127
_normalPaletteMapTable

159
Graphics display 39, 41

H

Help context 360

Help generation 132

Help system 127
default 127
window 131

370

Icon 188, 231
Input device
state 110
states 14, 18, 154
Input devices 37, 110
cursor 17,37
keyboard 11, 37
mouse 37, 151
programmer-defined 37
int
signed 261
unsigned 261

K

Keyboard device 11, 37

L

Linked-lists 137
List elements 85
Lists 137
Literal mask 224
long
signed 261
unsigned 261

M

Matrix 189, 241
Maximize button 249
Menu 269, 277, 295, 305
Minimize button 253
Mouse device 37, 151

Zinc Interface Library—Programmer’s Reference

N

new operator 13, 18, 22, 43, 65,
86, 90, 94, 107, 128, 133,
138, 153, 166, 198, 203,
211, 223, 234, 243, 251,
255, 260, 271, 279, 285,
292, 297, 307, 313, 321,
331, 341, 353, 359

Number 188, 257

P

Palette mapping 159
Palettes 157
Pop-up item 188, 269
Pop-up menu 189, 277
Pop-up window 188
UIW_POP_UP_WINDOW
283
Position 161
Programmer-defined
input devices 37
screen displays 40
window objects 189
Prompt 189, 291
Pull-down item 188, 295
Pull-down menu 189, 305

R

Regions 163

S

Screen display 39
graphics 39, 41
programmer-defined 40

Index

text 39, 63
Shift states 12
short

signed 261

unsigned 261
Signed

char 261

int 261

long 261

short 261
String 187, 311

Subtract 115, 147, 183, 301, 324, 364

System button 188, 319

5

Text 187, 329

Text display 39, 63

Time 165, 187, 339
packed 166, 169, 172

Title 189, 351

U

UI_BIOS_KEYBOARD 11, 37

UI_CURSOR 17, 37
UI_DATE 21
error codes 30
format flags 23, 26, 31
UI_DEVICE 37
UI_DISPLAY 39

UI_DOS_BGI_DISPLAY 39, 41
UI_DOS_TEXT _DISPLAY 39, 63

UI_EDIT_INFO 81
UI_ELEMENT 85
UI_ERROR_SYSTEM 89

UI_ERROR_WINDOW_SYSTEM

93
UI_EVENT 11, 99, 151, 181

UI_EVENT MANAGER 105

371

UI_EVENT_MAP 119
UI_HELP_SYSTEM 127
UI_HELP_WINDOW_SYSTEM
131
UL KEY -11,:99
UL_LIST 137
UI_MS_MOUSE 37, 151
UI_PALETTE 157
UI_PALETTE_MAP 159
UI_POSITION 99, 151, 161
UI_REGION 99, 163
UL_TIME 165
error codes 172
format flags 167, 170, 173
UI_WINDOW_MANAGER 177
UI_WINDOW_OBIJECT 187
programmer-defined 189
status 191
UIW_BORDER 187, 197
UIW_BUTTON 188, 201
format flags 204
UIW_DATE 187, 209
format flags 212
UIW_FORMATTED_STRING
188, 221
UIW_ICON 188, 231
format flags 234
UIW_MATRIX 189, 241
format flags 244
UIW_MAXIMIZE BUTTON
188
UIW_MAXIMIZE_BUTTON
188, 249
UIW_MINIMIZE BUTTON 188
UIW_MINIMIZE BUTTON
188, 253
UIW_NUMBER 188, 257
format flags 262
UIW_POP_UP_ITEM 188, 269
format flags 271
UIW_POP_UP_MENU 189, 277
format flags 279

372

UIW_POP_UP_WINDOW 188, 283
format flags 286
UIW_PROMPT 189, 291
UIW_PULL_DOWN_ITEM 188,295
format flags 297
UIW_PULL_DOWN_MENU 189,
305
UIW_STRING 187, 311
format flags 313
UIW_SYSTEM_BUTTON 188, 319
UIW_TEXT 187, 329
format flags 331
UIW_TIME 187, 339
format flags 342
UIW_TITLE 189, 351
UIW_WINDOW 188, 357
Undo strategy 81
unsigned
char 261
int 261
long 261
short 261
User function 205, 235, 273, 298

'

Validate function 315
Validate procedure 215, 226, 264,
333, 345

W

Window 188, 357
Window manager 177
Window objects 187
border 187, 197
button 188, 201
date 187, 209
formatted string 188, 221
icon 188, 231

Zinc Interface Library—Programmer’s Reference

matrix 189, 241

maximize button 188, 249

menu 269, 277

minimize button 188, 253

number 188, 257

pop-up item 188, 269

pop-up menu 189, 277

pop-up window 188, 283

programmer-defined 189

prompt 189, 291

pull-down item 188, 295

pull-down menu 189, 305

string 187, 311

system button 188, 319

text 187, 329

time 187, 339

title 189, 351

window 188, 357

WOAF flags 245, 280, 308, 360
WOF flags 190, 204, 214, 224,

234, 244, 263, 280, 286,
307, 313, 332, 343, 353,
359

Index 373

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
<http://fsf.org/>

Everﬁone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free"™ in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute It,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or_other work, in_any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document™, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you'". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section”™ is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document"s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
cgmmercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections'™ are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. |If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain_zero
Invariant Sections. |If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent'” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that i1s suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input

Inc.

to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque'.

Examples of suitable formats for Transparent copies include plain
ASCI1 without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only b
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page™ means, for a printed book, the title ?age itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page' means
the text near the most prominent appearance of the work®s title,
preceding the beginning of the body of the text.

The "publisher™ means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as ""Acknowledgements",
"Dedications', "Endorsements'™, or "History'".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. |If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also_ lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

IT you publish printed copies (or cogies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document®s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers iIn addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

IT the required texts for either cover are too voluminous to fit
legibly, you should put the Ffirst ones listed (as many as Ffit _
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

IT you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
IT you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version_ of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version Tilling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of 1t. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
iT the original publisher of that version gives permission.

B. List on_the Title Page, as authors, one or more persons or_ entities

responsible for authorship of the modifications in the Modified

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

State on the Title page the name of the publisher of the

Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the

terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document®s license notice.

H. Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new_authors, and

publisher of the Modified Version as given on the Title Page. |ITF
there is no section Entitled "History”™ in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was ﬁublished at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements'™ or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements'™. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

0. Preserve any Warranty Disclaimers.

m mo O

IT the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version"s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements', provided it contains

nothing but endorsements of your Modified Version by various
arties--for example, statements of peer review or_that the_ text has
eendapgroved by an organization as the authoritative definition of a
standard.

You may add a passage of up to Five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made b¥? any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalft of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their_names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique b{
adding at the end of it, in parentheses, the name of the origina
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in_the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and _any sections Entitled *"Dedications'”. You must delete all sections
Entitled "Endorsements'.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You mag extract a single document from such a collection, and

distribute it individually under this License, provided you iInsert a
copy of this License into the extracted document, and follow this
éicense in all other respects regarding verbatim copying of that
ocument.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate™ if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation®s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

IT the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document®s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copYright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

IT a_section in the Document is Entitled "Acknowledgements™,
"Dedications', or "History", the requirement (section 4) to Preserve
|tsIT|tIe (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to CO?Y, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and Ffinally
terminates your license, and_(b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. |If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new_ versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
IT the Document specifies that a particular numbered version of this
License "or any later version" applies to it, Kou have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (nhot as a draft) by the
Free Software Foundation. If the Document does not speci a version
number of this License, you may choose any version ever published (nhot
as a_draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy"s public statement of acceptance of a
Bersion permanently authorizes you to choose that version for the
ocument.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site') means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybodY can edit is an example of such a server. A
"Massive Multiauthor Collaboration” (or "MMC™) contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in _San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eli%ible for relicensing” if it is licensed under this
License, and it all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License_in the document and put the following copyright and
license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License'.

IT you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with.._Texts.”™ line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

IT you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

IT your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

	Programmers Reference Zinc1 Cover
	Programmers Reference Zinc1

